21 resultados para cassava wastewater

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Prototype sand-worm filtration beds were constructed at two prawn farms and one fish farm to assess and demonstrate their polychaete (marine worm) production and wastewater remediation capacities at semi-commercial scale. Wastewater treatment properties were monitored and worms produced were assessed and either sold for bait or used by the farms’ hatcheries as broodstock (prawn or fish breeder) feed. More than 34 megalitres of prawn- and fish-pond water was beneficially treated in the 116-319-d trial. The design of the polychaete-assisted sand filters (PASFs) constructed at each farm affected their water handling rates, which on average ranged from 315 to 1000 L m-2 d-1 at the three farms. A low profile design incorporating shallow bunded ponds made from polyethylene liner and timber stakes provided the easiest method of construction. This simple design applied at broad scale facilitated the highest quantities of treated water and the greatest worm production. Designs with higher sides increased the head pressure above the sand bed surface, thus increasing the amount of water that could be treated each day. Most water qualities were affected in a similar way to that demonstrated in the previous tank trials: dissolved oxygen, pH, total suspended solids and chlorophyll a levels were all consistently significantly lowered as pond water percolated through the sand bed, and dissolved forms of nitrogen and phosphorus were marginally increased on several occasions. However, unlike the previous smaller-scale tank trials, total nitrogen (TN) and total phosphorus (TP) levels were both significantly lowered by these larger-scale PASFs. The reasons for this are still unclear and require further research. Maximum TN and TP removals detected in the trial were 48.8% and 67.5%, respectively, and average removals (in unfed beds) at the three farms ranged from 20.0 to 27.7% for TN and from 22.8 to 40.8% for TP. Collectively, these results demonstrate the best suspended solids, chlorophyll and macronutrient removal capacities so far reported for any mariculture wastewater treatment methodology to date. Supplemental feeding of PASFs with fish meal was also investigated at one farm as a potential means of increasing their polychaete biomass production. Whilst fed beds produced higher biomass (152 ± 35 g m-2) compared with unfed beds (89 ± 17 g m-2) after 3.7 months of operation, the low number of replicates (2) prevented statistically significant differences from being demonstrated for either growth or survival. At harvest several months later, worm biomass production was estimated to be similar to, or in slight excess of, previously reported production levels (300-400 g m-2). Several qualities of filtered water appear to have been affected by supplemental feeding: it appeared to marginally lower dissolved oxygen and pH levels, and increased the TN and TP levels though not so much to eliminate significant beneficial water treatment effects. Periodic sampling during an artificial-tide demonstrated the tendency for treated-water quality changes during the first hour of filtration. Total nitrogen and ammonia peaked early in the tidal flow and then fell to more stable levels for the remainder of the filtration period. Other dissolved nutrients also showed signs of this sand-bed-flushing pattern, and dissolved oxygen tended to climb during the first hour and become more stable thereafter. These patterns suggest that the routine sampling of treated water undertaken at mid-inflow during the majority of the wider study would likely have overestimated the levels of TN and dissolved nutrients discharged from the beds, and hence underestimated the PASFs treatment efficacies in this regard. Analyses of polychaete biomass collected from each bed in the study revealed that the worms were free from contamination with the main prawn viruses that would create concerns for their feeding to commercial prawn broodstock in Australia. Their documented proximal and nutritional contents also provide a guide for hatchery operators when using live or frozen stock. Their dry matter content ranged from 18.3 to 22.3%, ash ranged from 10.2 to 14.0%, gross energy from 20.2 to 21.5 MJ kg-1, and fat from 5.0 to 9.2%. Their cholesterol levels ranged from 0.86 to 1.03% of dry matter, whilst total phospholipids range from 0.41 to 0.72%. Thirty-one different fatty acids were present at detectable (≥0.005% of dry matter) levels in the sampled worm biomass. Palmitic acid was by far the most prevalent fatty acid detected (1.21 ± 0.18%), followed by eicosapentaenoic (EPA) (0.48 ± 0.03%), stearic (0.46 ± 0.04%), vaccenic (0.38 ± 0.05%), adrenic (0.35 ± 0.02%), docosadienoic (0.28 ± 0.02%), arachidonic (AA) (0.22 ± 0.01%), palmitoleic (0.20 ± 0.04%) and 23 other fatty acids with average contents of less than 0.2% of dry matter. Supplemental feeding with fish meal at one farm appeared to increase the docosahexaenoic acid (DHA) content of the worms considerably, and modify the average AA : EPA : DHA from 1.0 : 2.7 : 0.3 to 1.0 : 2.0 : 1.1. Consistent with previous results, the three most heavily represented amino acids in the dry matter of sampled worms were glutamic acid (8.5 ± 0.2%), aspartic acid (5.5 ± 0.1%) and glycine (4.9 ± 0.5%). These biomass content results suggest that worms produced in PASF systems are well suited to feeding to prawn and fish broodstock, and provide further strong evidence of the potential to modify their contents for specific nutritional uses. The falling wild-fishery production of marine bloodworms in Queensland is typical of diminishing polychaete resources world-wide and demonstrates the need to develop sustainable production methods here and overseas. PASF systems offer the dual benefits of wastewater treatment for environmental management and increased productivity through a valuable secondary crop grown exclusively on waste nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Point sources of wastewater pollution, including effluent from municipal sewage treatment plants and intensive livestock and processing industries, can contribute significantly to the degradation of receiving waters (Chambers et al. 1997; Productivity Commission 2004). This has led to increasingly stringent local wastewater discharge quotas (particularly regarding Nitrogen, Phosphorous and suspended solids), and many municipal authorities and industry managers are now faced with upgrading their existing treatment facilities in order to comply. However, with high construction, energy and maintenance expenses and increasing labour costs, traditional wastewater treatment systems are becoming an escalating financial burden for the communities and industries that operate them. This report was generated, in the first instance, for the Burdekin Shire Council to provide information on design aspects and parameters critical for developing duckweed-based wastewater treatment (DWT) in the Burdekin region. However, the information will be relevant to a range of wastewater sources throughout Queensland. This information has been collated from published literature and both overseas and local studies of pilot and full-scale DWT systems. This report also considers options to generate revenue from duckweed production (a significant feature of DWT), and provides specifications and component cost information (current at the time of publication) for a large-scale demonstration of an integrated DWT and fish production system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This joint DPI/Burdekin Shire Council project assessed the efficacy of a pilot-scale biological remediation system to recover Nitrogen (N) and Phosphorous (P) nutrients from secondary treated municipal wastewater at the Ayr Sewage Treatment Plant. Additionally, this study considered potential commercial uses for by-products from the treatment system. Knowledge gained from this study can provide directions for implementing a larger-scale final effluent treatment protocol on site at the Ayr plant. Trials were conducted over 10 months and assessed nutrient removal from duckweed-based treatments and an algae/fish treatment – both as sequential and as stand-alone treatment systems. A 42.3% reduction in Total N was found through the sequential treatment system (duckweed followed by algae/fish treatment) after 6.6 days Effluent Retention Time (E.R.T.). However, duckweed treatment was responsible for the majority of this nutrient recovery (7.8 times more effective than algae/fish treatment). Likewise, Total P reduction (15.75% reduction after 6.6 days E.R.T.) was twice as great in the duckweed treatment. A phytoplankton bloom, which developed in the algae/fish tanks, reduced nutrient recovery in this treatment. A second trial tested whether the addition of fish enhanced duckweed treatment by evaluating systems with and without fish. After four weeks operation, low DO under the duckweed blanket caused fish mortalities. Decomposition of these fish led to an additional organic load and this was reflected in a breakdown of nitrogen species that showed an increase in organic nitrogen. However, the Dissolved Inorganic Nitrogen (DIN: ammonia, nitrite and nitrate) removal was similar between treatments with and without fish (57% and 59% DIN removal from incoming, respectively). Overall, three effluent residence times were evaluated using duckweed-based treatments; i.e. 3.5 days, 5.5 days and 10.4 days. Total N removal was 37.5%, 55.7% and 70.3%, respectively. The 10.4-day E.R.T. trial, however, was evaluated by sequential nutrient removal through the duckweed-minus-fish treatment followed by the duckweed-plus-fish treatment. Therefore, the 70.3% Total N removal was lower than could have been achieved at this retention time due to the abovementioned fish mortalities. Phosphorous removal from duckweed treatments was greatest after 10.4-days E.R.T. (13.6%). Plant uptake was considered the most important mechanism for this P removal since there was no clay substrate in the plastic tanks that could have contributed to P absorption as part of the natural phosphorous cycle. Duckweed inhibited phytoplankton production (therefore reducing T.S.S) and maintained pH close to neutral. DO beneath the duckweed blanket fell to below 1ppm; however, this did not limit plant production. If fish are to be used as part of the duckweed treatment, air-uplifts can be installed that maintain DO levels without disturbing surface waters. Duckweed grown in the treatments doubled its biomass on average every 5.7 days. On a per-surface area basis, 1.23kg/m2 was harvested weekly. Moisture content of duckweed was 92%, equating to a total dry weight harvest of 0.098kg/m2/week. Nutrient analysis of dried duckweed gave an N content of 6.67% and a P content of 1.27%. According to semi-quantitative analyses, harvested duckweed contained no residual elements from the effluent stream that were greater than ANZECC toxicant guidelines proposed for aquaculture. In addition, jade perch, a local aquaculture species, actively consumed and gained weight on harvested duckweed, suggesting potential for large-scale fish production using by-products from the effluent treatment process. This suggests that a duckweed-based system may be one viable option for tertiary treatment of Ayr municipal wastewater. The tertiary detention lagoon proposed by the Burdekin Shire Council, consisting of six bays approximately 290 x 35 metres (x 1.5 metres deep), would be suitable for duckweed culture with minor modification to facilitate the efficient distribution of duckweed plants across the entire available growing surface (such as floating containment grids). The effluent residence time resulting from this proposed configuration (~30 days) should be adequate to recover most effluent nutrients (certainly N) based on the current trial. Duckweed harvest techniques on this scale, however, need to be further investigated. Based on duckweed production in the current trial (1.23kg/m2/week), a weekly harvest of approximately 75 000kg (wet weight) could be expected from the proposed lagoon configuration under full duckweed production. A benefit of the proposed multi-bay lagoon is that full lagoon production of duckweed may not be needed to restore effluent to a desirable standard under the present nutrient load, and duckweed treatment may be restricted to certain bays. Restored effluent could be released without risk of contaminating the receiving waterway with duckweed by evacuating water through an internal standpipe located mid-way in the water column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium bedding sand which is commonly available in coastal sedimentary deposits, and a marine polychaete-worm species from Moreton Bay recently classified as Perinereis helleri (Nereididae), were deployed in a simple low-maintenance sand filter design that potentially has application at large scale. Previous work had shown that this physical and biological combination can provide a new option for saline wastewater treatment, since the worms help to prevent sand filter blocking with organic debris and offer a profitable by-product. To test the application of this new concept in a commercial environment, six 1.84 m2 Polychaete-assisted sand filters were experimentally tested for their ability to treat wastewater from a semi-intensive prawn culture pond. Polychaetes produced exclusively on the waste nutrients that collected in these gravity-driven sand filters were assessed for their production levels and nutritional contents. Water parameters studied included temperature, salinity, pH, dissolved oxygen (DO), oxidation/ reduction potential (redox), suspended solids, chlorophyll a, biological oxygen demand (BOD), and common forms of nitrogen and phosphorus. Pond water which had percolated through the sand bed had significantly lower pH, DO and redox levels compared with inflow water. Suspended solids and chlorophyll a levels were consistently more than halved by the process. Reductions in BOD appeared dependant on regular subsurface flows. Only marginal reductions in total nitrogen and phosphorus were documented, but their forms were altered in a potentially useful way: dissolved forms (ammonia and orthophosphate) were generated by the process, and this remineralisation also seemed to be accentuated by intermittent flow patterns. Flow rates of approximately 1,500 L m-2 d-1 were achieved suggesting that a 1 ha polychaete bed of this nature could similarly treat the discharge from a 10 ha semi-intensive prawn farm. Sixteen weeks after stocking sand beds with one-month-old P. helleri, over 3.6 kg of polychaete biomass (wet weight) was recovered from the trial. Production on a sand bed area basis was 328 g m-2. Similar (P>0.05) overall biomass production was found for the two stocking densities tested (2000 and 6000 m-2; n = 3), but survival was lower and more worms were graded as small (<0.6 g) when produced at the higher density (28.2 ± 1.5 % and approx. 88 %, respectively) compared with the lower density (46.8 ± 4.4 % and approx. 76 %, respectively). When considered on a weight for weight basis, about half of the worm biomass produced was generally suitable for use as bait. The nutritional contents of the worms harvested were analysed for different stocking densities and graded sizes. These factors did not significantly affect their percentages of dry matter (DM) (18.23 ± 0.57 %), ash (19.77 ± 0.80 % of DM) or gross energy 19.39 ± 0.29 MJ kg-1 DM) (n = 12). Although stocking density did not affect the worms’ nitrogen and phosphorus contents, small worms had a higher mean proportion of nitrogen and phosphorus (10.57 ± 0.17 % and 0.70 ± 0.01 % of DM, respectively) than large worms (9.99 ± 0.12 % and 0.65 ± 0.01 % of DM, respectively) (n = 6). More lipid was present in large worms grown at the medium density (11.20 ± 0.19 %) compared with the high density (9.50 ± 0.31 %) and less was generally found in small worms (7.1-7.6 % of DM). Mean cholesterol and total phospholipid levels were 5.24 ± 0.15 mg g-1 and 13.66 ± 2.15 mg g-1 DM, respectively (n = 12). Of the specific phospholipids tested, phosphatidyl-serine or sphingomyelin were below detection limits (<0.05 mg g-1), whilst mean levels of phosphatidyl-ethanolamine, phosphatidyl-inositol, phosphatidyl-choline and lysophosphatidyl-choline were 6.89 ± 1.09, 0.89 ± 0.26, 4.04 ± 1.17 and 1.84 ± 0.37 mg g-1, respectively (n = 12). Culture density generally had a more pronounced effect on phospholipid contents than did size of worms. By contrast, worm size had a more pronounced effect on total fatty acid contents, with large worms containing significantly higher (P<0.001) levels on a DM basis (46.88 ± 2.46 mg g-1) than smaller worms (27.76 ± 1.28 mg g-1). A very broad range of fatty acids were detected with palmitic acid being the most heavily represented class (up to 14.23 ± 0.49 mg g-1 DM or 27.28 ± 0.22 % of total fatty acids). Other heavily represented classes included stearic acid (7.4-8.8 %), vaccenic acid (6.8-7.8 %), arachidonic acid (3.5-4.4 %), eicosapentaenoic acid (9.9-13.8 %) and docosenoic acid (5.7-7.0 %). Stocking density did not affect (P>0.05) the levels of amino acids present in polychaete DM, but there was generally less of each amino acid tested on a weight per weight basis in large worms than in small worms. This difference was significant (P<0.05) for the most heavily represented classes being glutamic acid (73-77 mg g-1), aspartic acid (50-54 mg g-1), and glycine (46-53 mg g-1). These results demonstrate how this polychaete species can be planted and sorted at harvest according to various strategies aimed at providing biomass with specific physical and nutritional qualities for different uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many potential bioremediation approaches that may be suitable for prawn farms in Queensland. Although most share generally accepted bioremediation principles, advocacy for different methods tends to vary widely. This diversity of approach is particularly driven by the availability and knowledge of functional species at different localities around the world. In Australia, little is known about the abilities of many native species in this regard, and translocation and biosecurity issues prevent the use of exotic species that have shown potential in other countries. Species selected must be tolerant of eutrophic conditions and ecological shifts, because prawn pond nutrient levels and pathways can vary with different assemblages of autotrophic and heterotrophic organisms. Generally, they would be included in a constructed ecosystem because of their functional contributions to nutrient cycling and uptake, and to create nutrient sinks in forms of harvestable biomass. Wide salinity, temperature and water quality tolerances are also valuable attributes for selected species due to the sometimes-pronounced effects of environmental extremes, and to provide over-wintering options and adequate safety margins in avoiding mass mortalities. To practically achieve these bioremediation polycultures on a large scale, and in concert with the operations of a prawn farm, methods involving seed production, stock management, and a range of other farm engineering and product handling systems need to be reliably achievable and economically viable. Research funding provided by the Queensland Government through the Aquaculture Industry Development Initiative (AIDI) 2002-04 has enabled a number of technical studies into biological systems to treat prawn farm effluent for recirculation and improved environmental sustainability. AIDI bioremediation research in southern Queensland was based at the Bribie Island Aquaculture Research Centre (BIARC), and was conducted in conjunction with AIDI genetics and selection research, and a Natural Heritage Trust (NHT) funded program (Coast and Clean Seas Project No.717757). This report compilation provides a summary of some of the work conducted within these programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the trial is to assess the growth and production level of cultured Polychaetes, and wastewater remediation properties of Polychaete beds at a commercial prawn farm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project assessed the efficiency of lotus reducing the amount of nutrients that are generated in a freshwater aquaculture system. Barramundi were produced at a stocking density similar to industry practices. Lotus was grown to determine if it was capable at reducing the nutrient loading from an aquaculture system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the nutritional composition of the intertidal marine polychaete Perinereis helleri (Nereididae)when artificially cultured in sand filters treating mariculture wastewater. Moisture levels in harvested P. helleri ranged from 758 to 855 g kg1, and ash, from 23 to 61 g kg1 wet matter (WM). Stocking density and graded size after harvest significantly affected their composition. Higher total lipid contents were found in large (>0.6 g) P. helleri(16–19 g kg1 WM) and those grown at the lowest density(1000 m2: 18 g kg 1 WM) than in small (≤0.6 g) ones (14 g kg1 WM) and those grown at the highest densities (4000–6000 m2: 13–16 g kg1 WM). Several fatty acids within a very broad profile (some 30 identified) reflected this pattern, yet their ARA/EPA/DHA ratios were relatively unaffected. Feeding the polychaete-assisted sand filters (PASF) with fish meal to increase worm biomass productivity significantly increased their DHA content. Other components (e.g. protein, phospholipids, cholesterol, carbohydrate, amino acids, nitrogen, minerals and bromophenols) and nutritional factors (e.g. maturity, feeding seaweed and endemic shrimp viral content) were also investigated. Results suggest that PASF-produced P. helleri have a well-balanced nutritional profile for penaeid shrimp and fish broodstock.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to investigate the productivity and functionality of sand filters stocked with marine worms for wastewater treatment at mariculture facilities. Medium bedding sand which is commonly available in coastal sedimentary deposits and nereidid polychaetes (Perinereis nuntia and P. helleri) from Moreton Bay in southeast Queensland were combined and studied in down-flow sand filtration beds. This combination appears to provide a new option for brackish wastewater treatment whereby the activities of the worms help to prevent sand filters from blocking with organic debris and their biomass offers a valuable by-product. Phytoplankton-rich pond waters percolating through sand-worm beds were reliably treated in several useful ways: suspended solids and chlorophyll a levels were consistently reduced by >50% by the process, and nutrients were converted into bio-available dissolved forms. Dissolved oxygen, redox and pH levels were also lowered significantly by the process. Water treatment rates of approx 1500 L m-2 d-1 were routinely achieved. P. nuntia appeared more suitable than P. helleri for stocking directly into sand filtration beds as nectochaetes, but generally exhibited slower growth. Survival and growth were influenced by stocking density. Sand-filter beds stocked with juvenile worms and fed only with eutrophic pond water demonstrated polychaete production capacities in the order of 300-400 g m-2 (eg. P. helleri: 328 g m-2 in 16 weeks). These results show how nereidid polychaetes can be reliably produced within simple, low-maintenance sand filters, and provide data necessary for the functional integration of this novel wastewater treatment system into contemporary seafood farming systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes research undertaken in 2000 into using magroves in wastewater remediation ponds for prawn farms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess their utility for profitable wastewater bioremediation, banana prawns, Penaeus (Fenneropenaeus) merguiensis (de Man), were stocked at low densities (1 – 5 m-2) and grown without supplemental feeding in five commercial-prawn-farm settlement ponds (0.3 to 6.0 ha). The prawns free-ranged in the variously designed ponds for 160 to 212 days after stocking as PL15. Survival estimates ranged from 12% to 60% with production of 50 – 528 kg ha-1. Over 1150 kg of marketable product was produced in the study. Exceptional growth was monitored at one farm where prawns reached an average size of 17g in 80 days. Nutrients in water flowing into (8 - 40 ML d-1) and out of the settlement pond at that farm were assessed twice weekly along with routine water quality measurements. Only small differences in water qualities were detected between waters running into and out of this settlement pond. Total nitrogen levels gradually increased from 1 - 1.5 mg L-1 early in the season to over 3 mg L-1 towards the end of the season. Total phosphorus levels similarly rose from 0.1 - 0.2 mg L-1 to 0.3 - 0.4 mg L-1 in the middle of the season, but fell to 0.2 – 0.3 mg L-1 towards the end when approximately 12,000 prawns were harvested with a total weight of 175 kg. No significant differences (P > 0.05) were detected in the overall acceptability of prawns harvested from each of the 5 settlement ponds in small-scale consumer sensory analyses. The prawns from settlement ponds were rated similarly to banana prawns grown with commercial diets at two other establishments. Microbiological analyses of prawns from all farms showed bacterial levels to be well within food-grade standards and lower than prawns produced in a normal growout pond. These results demonstrate that high quality food grade banana prawns can be produced in these wastewater treatment systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To experimentally investigate the effect of vertical artificial substrate and different densities of the banana prawn Penaeus (Fenneropenaeus) merguiensis on nutrient levels in prawn pond effluent, a time series experiment was conducted in a replicated tank system supplied periodically with discharge from a prawn production pond. Few differences (P>0.05) were detected between tanks without prawns, and tanks with low densities (5 prawns in 1700 litres) of prawns (10-12 g), in terms of nitrogen and phosphorus in the water column over the 28-day experimental period. Higher densities of prawns (starting at 25 or 50 per tank) caused an elevation of these macronutrients in the water column. This was partly due to prawn biomass losses from mortalities and weight reductions in the tank system. The survival and condition of prawns was significantly (P<0.05) reduced in tanks at these higher densities. The presence of artificial substrate (2 m2 tank-1) did not affect (P>0.05) the levels of nutrients in tank water columns, but significantly (P<0.05) increased the amount of nitrogen in tank residues left at the end of the trial when no prawns were present. The prawns had obviously been grazing on surfaces inside the tanks, and their swimming actions appeared to keep light particulate matter in suspension. Higher prawn densities increased microalgal blooms, which presumably kept ammonia levels low, and it is suggested that this association may provide the means for improved remediation of prawn farm effluent in the future.