3 resultados para caring philosophies

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating the environment impacts of land management practice change on the Great Barrier Reef water quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Great Barrier Reef (GBR) is the largest reef system in the world; it covers an area of approximately 2,225,000 km² in the northern Queensland continental shelf. There are approximately 750 reefs that exist within 40 km of the Queensland coast. Recent research has identified that poor water quality is having negative impacts on the GBR (Haynes et al. 2007). The Fitzroy Basin covers 143,000 km² and is the largest catchment draining into the GBR as well as being one of the largest catchments in Australia (Karfs et al. 2009). The Burdekin Catchment is the second largest catchment entering into the GBR and covers 133,432 km².The prime determinant for the changes in water quality entering into the GBR have been attributed to grazing, with beef production the largest single land use industry comprising 90% of the land area (Karfs et al. 2009). Extensive beef production contributes over $1 billion dollars to the national economy annually and employs over 9000 people, many in rural communities (Gordon 2007). ‘Economic modelling of grazing systems in the Fitzroy and Burdekin catchments’ was a joint project with the Fitzroy Basin Association and the Queensland Department of Employment Economic Development and Innovation. The project was formed under the federally funded Caring For Our Country and the Reef Rescue programs. The project objectives were as follows; * Quantifying the costs of over-utilising available pasture and the resulting sediment leaving a representative farm for four of the major land systems in the Burdekin or Fitzroy catchments and identifying economically optimal pasture utilisation rates * Estimating the cost of reducing pasture utilisation rates below the determined optimal * Using this information, guide the selection of appropriate tools to achieve reduced utilisation rates e.g. extension process versus incentive payments or a combination of both * Model the biophysical and economic impacts of altering grazing systems to restore land condition e.g. from C condition to B condition for four land systems in the Burdekin or Fitzroy catchments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.