4 resultados para bivariate GARCH-M
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The genetics of heifer performance in tropical 'wet' and 'dry' seasons, and relationships with steer performance, were studied in Brahman (BRAH) and Tropical Composite (TCOMP) (50% Bos indicus, African Sanga or other tropically adapted Bos taurus; 50% non-tropically adapted Bos taurus) cattle of northern Australia. Data were from 2159 heifers (1027 BRAH, 1132 TCOMP), representing 54 BRAH and 51 TCOMP sires. Heifers were assessed after post-weaning 'wet' (ENDWET) and 'dry' (ENDDRY) seasons. Steers were assessed post-weaning, at feedlot entry, over a 70-day feed test, and after similar to 120-day finishing. Measures studied in both heifers and steers were liveweight (LWT), scanned rump fat, rib fat and M. longissimus area (SEMA), body condition score (CS), hip height (HH), serum insulin-like growth factor-I concentration (IGF-I), and average daily gains (ADG). Additional steer measures were scanned intra-muscular fat%, flight time, and daily (DFI) and residual feed intake (RFI). Uni- and bivariate analyses were conducted for combined genotypes and for individual genotypes. Genotype means were predicted for a subset of data involving 34 BRAH and 26 TCOMP sires. A meta-analysis of genetic correlation estimates examined how these were related to the difference between measurement environments for specific traits. There were genotype differences at the level of means, variances and genetic correlations. BRAH heifers were significantly (P < 0.05) faster-growing in the 'wet' season, slower-growing in the 'dry' season, lighter at ENDDRY, and taller and fatter with greater CS and IGF-I at both ENDWET and ENDDRY. Heritabilities were generally in the 20 to 60% range for both genotypes. Phenotypic and genetic variances, and genetic correlations, were commonly lower for BRAH. Differences were often explained by the long period of tropical adaptation of B. indicus. Genetic correlations were high between corresponding measures at ENDWET and ENDDRY, positive between fat and muscle measures in TCOMP but negative in BRAH (mean of 13 estimates 0.50 and -0.19, respectively), and approximately zero between steer feedlot ADG and heifer ADG in BRAH. Numerous genetic correlations between heifers and steers differed substantially from unity, especially in BRAH, suggesting there may be scope to select differently in the sexes where that would aid the differing roles of heifers and steers in production. Genetic correlations declined as measurement environments became more different, the rates of decline (environment sensitivity) sometimes differing with genotype. Similar measures (LWT, HH and ADG; IGF-I at ENDWET in TCOMP) were genetically correlated with steer DFI in heifers as in steers. Heifer SEMA was genetically correlated with steer feedlot RFI in BRAH (0.75 +/- 0.27 at ENDWET, 0.66 +/- 0.24 at ENDDRY). Selection to reduce steer RFI would reduce SEMA in BRAH heifers but otherwise have only small effects on heifers before their first joining.
Resumo:
Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment. © 2012 American Society of Agricultural and Biological Engineers.