3 resultados para beaver dam eye
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The red-finned blue-eye (Scaturiginichthys vermeilipinnis) is endemic to a single complex of springs emanating from the Great Artesian Basin, Australia. The species has been recorded as naturally occurring in eight separate very shallow (generally <20 mm) springs, with a combined wetland area of ~0.3 ha. Since its discovery in 1990, five red-finned blue-eye (RFBE) populations have been lost and subsequent colonisation has occurred in two spring wetlands. Current population size is estimated at <3000 individuals. Artesian bores have reduced aquifer pressure, standing water levels and spring-flows in the district. There is evidence of spatial separation within the spring pools where RFBE and the introduced fish gambusia (Gambusia holbrooki) co-occur, although both species are forced together when seasonal extremes affect spring size and water temperature. Gambusia was present in four of the five springs where RFBE populations have been lost. Four out of the five remaining subpopulations of RFBE are Gambusia free. Circumstantial evidence suggests that gambusia is a major threat to red-finned blue-eyes. The impact of Gambusia is probably exacerbated by domestic stock (cattle and sheep), feral goats and pigs that utilise the springs and can negatively affect water quality and flow patterns. Three attempts to translocate RFBE to apparently suitable springs elsewhere within the complex have failed. Opportunities to mitigate threats are discussed, along with directions for future research to improve management of this extremely threatened fish and habitat.
Resumo:
We examine the structure and phylogeography of the pig-eye shark (Carcharhinus amboinensis) common in shallow coastal environments in northern Australia using two types of genetic markers, two mitochondrial (control region and NADH hydrogenase 4) and two nuclear (microsatellite and Rag 1) DNA. Two populations were defined within northern Australia on the basis of mitochondrial DNA evidence, but this result was not supported by nuclear microsatellite or Rag 1 markers. One possibility for this structure might be sex-specific behaviours such as female philopatry, although we argue it is doubtful that sufficient time has elapsed for any potential signatures from this behaviour to be expressed in nuclear markers. It is more likely that the observed pattern represents ancient populations repeatedly isolated and connected during episodic sea level changes during the Pleistocene epoch, until current day with restricted contemporary gene flow maintaining population genetic structure. Our results show the need for an understanding of both the history and ecology of a species in order to interpret patterns in genetic structure.