119 resultados para aquatic plant
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
The reliable assessment of macrophyte biomass is fundamental for ecological research and management of freshwater ecosystems. While dry mass is routinely used to determine aquatic plant biomass, wet (fresh) mass can be more practical. We tested the accuracy and precision of wet mass measurements by using a salad spinner to remove surface water from four macrophyte species differing in growth form and architectural complexity. The salad spinner aided in making precise and accurate wet mass with less than 3% error. There was also little difference between operators, with a user bias estimated to be below 5%. To achieve this level of precision, only 10–20 turns of the salad spinner are needed. Therefore, wet mass of a sample can be determined in less than 1 min. We demonstrated that a salad spinner is a rapid and economical technique to enable precise and accurate macrophyte wet mass measurements and is particularly suitable for experimental work. The method will also be useful for fieldwork in situations when sample sizes are not overly large.
Resumo:
We investigated whether plasticity in growth responses to nutrients could predict invasive potential in aquatic plants by measuring the effects of nutrients on growth of eight non-invasive native and six invasive exotic aquatic plant species. Nutrients were applied at two levels, approximating those found in urbanized and relatively undisturbed catchments, respectively. To identify systematic differences between invasive and non-invasive species, we compared the growth responses (total biomass, root:shoot allocation, and photosynthetic surface area) of native species with those of related invasive species after 13 weeks growth. The results were used to seek evidence of invasive potential among four recently naturalized species. There was evidence that invasive species tend to accumulate more biomass than native species (P = 0.0788). Root:shoot allocation did not differ between native and invasive plant species, nor was allocation affected by nutrient addition. However, the photosynthetic surface area of invasive species tended to increase with nutrients, whereas it did not among native species (P = 0.0658). Of the four recently naturalized species, Hydrocleys nymphoides showed the same nutrient-related plasticity in photosynthetic area displayed by known invasive species. Cyperus papyrus showed a strong reduction in photosynthetic area with increased nutrients. H. nymphoides and C. papyrus also accumulated more biomass than their native relatives. H. nymphoides possesses both of the traits we found to be associated with invasiveness, and should thus be regarded as likely to be invasive.
Resumo:
BACKGROUND: Field studies of diuron and its metabolites 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), 3,4-dichlorophenylurea (DCPU) and 3,4-dichloroaniline (DCA) were conducted in a farm soil and in stream sediments in coastal Queensland, Australia. RESULTS: During a 38 week period after a 1.6 kg ha^-1 diuron application, 70-100% of detected compounds were within 0-15 cm of the farm soil, and 3-10% reached the 30-45 cm depth. First-order t1/2 degradation averaged 49 ± 0.9 days for the 0-15, 0-30 and 0-45 cm soil depths. Farm runoff was collected in the first 13-50 min of episodes lasting 55-90 min. Average concentrations of diuron, DCPU and DCPMU in runoff were 93, 30 and 83-825 µg L^-1 respectively. Their total loading in all runoff was >0.6% of applied diuron. Diuron and DCPMU concentrations in stream sediments were between 3-22 and 4-31 µg kg^-1 soil respectively. The DCPMU/diuron sediment ratio was >1. CONCLUSION: Retention of diuron and its metabolites in farm topsoil indicated their negligible potential for groundwater contamination. Minimal amounts of diuron and DCMPU escaped in farm runoff. This may entail a significant loading into the wider environment at annual amounts of application. The concentrations and ratio of diuron and DCPMU in stream sediments indicated that they had prolonged residence times and potential for accumulation in sediments. The higher ecotoxicity of DCPMU compared with diuron and the combined presence of both compounds in stream sediments suggest that together they would have a greater impact on sensitive aquatic species than as currently apportioned by assessments that are based upon diuron alone.
Resumo:
Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential
Resumo:
The dynamics of Heteropogon contortus (black speargrass) populations were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This subset included 2 landscape positions and 3 stocking rates in both native pasture and legume-oversown native pasture. Severe drought conditions throughout much of the study necessitated ongoing adjustments to the original stocking rates and, as a result, drought was the major influence on the dynamics of H. contortus populations. Plant density and basal area in the silver-leaved ironbark landscape were consistently higher than those in the narrow-leaved ironbark landscape. There was limited evidence of any impact by either light or moderate stocking rate but there was evidence of an impact at the heaviest stocking rate. There was minimal impact of legume oversowing. Relatively large fluctuations in plant density occurred during this study resulting from the death of existing plants, due mainly to drought, and seedling recruitment. Similarly, there were relatively large fluctuations in basal area caused mainly by changes in plant size. Rates for turnover of plant numbers were relatively high whereas plant turnover rates of basal areas were relatively low. Regular seedling recruitment appeared necessary to ensure the persistence of this species. Despite the high turnover, populations were maintained at reasonable levels indicating the overall resilience of H. contortus.
Resumo:
The recent summary report of a Department of Energy Workshop on Plant Systems Biology (P.V. Minorsky [2003] Plant Physiol 132: 404-409) offered a welcomed advocacy for systems analysis as essential in understanding plant development, growth, and production. The goal of the Workshop was to consider methods for relating the results of molecular research to real-world challenges in plant production for increased food supplies, alternative energy sources, and environmental improvement. The rather surprising feature of this report, however, was that the Workshop largely overlooked the rich history of plant systems analysis extending over nearly 40 years (Sinclair and Seligman, 1996) that has considered exactly those challenges targeted by the Workshop. Past systems research has explored and incorporated biochemical and physiological knowledge into plant simulation models from a number of perspectives. The research has resulted in considerable understanding and insight about how to simulate plant systems and the relative contribution of various factors in influencing plant production. These past activities have contributed directly to research focused on solving the problems of increasing biomass production and crop yields. These modeling approaches are also now providing an avenue to enhance integration of molecular genetic technologies in plant improvement (Hammer et al., 2002).
Resumo:
The dynamics of the unpalatable Aristida spp. (wiregrasses) were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This paper reports the results from these treatments which included 2 land classes (silver-leaved and narrowleaved ironbark), 3 stocking rates (0.3, 0.6 and 0.9 beasts/ha) in both native pasture and legumeoversown native pasture, all in the absence of fire. Changes in plant density and basal area of Aristida spp. reflected differences in both the survival and size of existing plants together with a large seedling recruitment in 1991. Two different taxa of Aristida spp. were distinguished; however, there were no clear differences in the response of these 2 taxa to the treatments. Grazing had the greatest impact on population dynamics through reducing basal area as stocking rate increased. Neither landscape position nor legume oversowing had a major impact on Aristida spp. The results suggest that populations of Aristida spp. will be highest under light grazing and that seedling recruitment may be episodic
Resumo:
This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index
Resumo:
Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.
Resumo:
The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
Approximately 30% of plant nuclear genes appear to encode proteins targeted to the plastids or endoplasmic reticulum (ER). The signals that direct proteins into these compartments are diverse in sequence, but, on the basis of a limited number of tests in heterologous systems, they appear to be functionally conserved across species. To further test the generality of this conclusion, we tested the ability of two plastid transit peptides and an ER signal peptide to target green fluorescent protein (GFP) in 12 crops, including three monocots (barley, sugarcane, wheat) and nine dicots (Arabidopsis, broccoli, cabbage, carrot, cauliflower, lettuce, radish, tobacco, turnip). In all species, transient assays following microprojectile bombardment or vacuum infiltration using Agrobacterium showed that the plastid transit peptides from tomato DCL (defective chloroplast and leaves) and tobacco RbcS [ribulose bisphosphate carboxylase (Rubisco) small subunit] genes were effective in targeting GFP to the leaf plastids. GFP engineered as a fusion to the N-terminal ER signal peptide from Arabidopsis basic chitinase and a C-terminal HDEL signal for protein retention in the ER was accumulated in the ER of all species. The results in tobacco were confirmed in stably transformed cells. These signal sequences should be useful to direct proteins to the plastid stroma or ER lumen in diverse plant species of biotechnological interest for the accumulation of particular recombinant proteins or for the modification of particular metabolic streams.
Resumo:
Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.