5 resultados para adopted 2003

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Juvenile Wood Initiative (JWI) project has been running successfully since July 2003 under a Research Agreement with FWPA and Letters of Association with the consortium partners STBA (Southern Tree Breeding Association), ArborGen and FPQ (Forestry Plantations Queensland). Over the last five and half years, JWI scientists in CSIRO, FPQ, and STBA have completed all 12 major milestones and 28 component milestones according to the project schedule. We have made benchmark progress in understanding the genetic control of wood formation and interrelationships among wood traits. The project has made 15 primary scientific findings and several results have been adopted by industry as summarized below. This progress was detailed in 10 technical reports to funding organizations and industry clients. Team scientists produced 16 scientific manuscripts (8 published, 1 in press, 2 submitted, and several others in the process of submission) and 15 conference papers or presentations. Primary Scientific Findings. The 15 major scientific findings related to wood science, inheritance and the genetic basis of juvenile wood traits are: 1. An optimal method to predict stiffness of standing trees in slash/Caribbean pine is to combine gravimetric basic density from 12 mm increment cores with a standing tree prediction of MoE using a time of flight acoustic tool. This was the most accurate and cheapest way to rank trees for breeding selection for slash/Caribbean hybrid pine. This method was also recommended for radiata pine. 2. Wood density breeding values were predicted for the first time in the STBA breeding population using a large sample of 7,078 trees (increment cores) and it was estimated that selection of the best 250 trees for deployment will produce wood density gains of 12.4%. 3. Large genetic variation for a suite of wood quality traits including density, MFA, spiral grain, shrinkage, acoustic and non-acoustic stiffness (MoE) for clear wood and standing trees were observed. Genetic gains of between 8 and 49% were predicted for these wood quality traits with selection intensity between 1 to 10% for radiata pine. 4. Site had a major effect on juvenile-mature wood transition age and the effect of selective breeding for a shorter juvenile wood formation phase was only moderate (about 10% genetic gain with 10% selection intensity, equivalent to about 2 years reduction of juvenile wood). 5. The study found no usable site by genotype interactions for the wood quality traits of density, MFA and MoE for both radiata and slash/Caribbean pines, suggesting that assessment of wood properties on one or two sites will provide reliable estimates of the genetic worth of individuals for use in future breeding. 6. There were significant and sizable genotype by environment interactions between the mainland and Tasmanian regions and within Tasmania for DBH and branch size. 7. Strong genetic correlations between rings for density, MFA and MoE for both radiata and slash/Caribbean pines were observed. This suggests that selection for improved wood properties in the innermost rings would also result in improvement of wood properties in the subsequent rings, as well as improved average performance of the entire core. 8. Strong genetic correlations between pure species and hybrid performance for each of the wood quality traits were observed in the hybrid pines. Parental performance can be used to identify the hybrid families which are most likely to have superior juvenile wood properties of the slash/Caribbean F1 hybrid in southeast Queensland. 9. Large unfavourable genetic correlations between growth and wood quality traits were a prominent feature in radiata pine, indicating that overcoming this unfavourable genetic correlation will be a major technical issue in progressing radiata pine breeding. 10. The project created the first radiata pine 18 k cDNA microarray and generated 5,952 radiata pine xylogenesis expressed sequence tags (ESTs) which assembled into 3,304 unigenes. 11. A total of 348 genes were identified as preferentially expressed genes in earlywood or latewood while a total of 168 genes were identified as preferentially expressed genes in either juvenile or mature wood. 12. Juvenile earlywood has a distinct transcriptome relative to other stages of wood development. 13. Discovered rapid decay of linkage disequilibrium (LD) in radiata pine with LD decaying to approximately 50% within 1,700 base pairs (within a typical gene). A total of 913 SNPS from sequencing 177,380 base pairs were identified for association genetic studies. 14. 149 SNPs from 44 genes and 255 SNPs from a further 51 genes (total 95 genes) were selected for association analysis with 62 wood traits, and 30 SNPs were shortlisted for their significant association with variation of wood quality traits (density, MFA and MoE) with individual significant SNPs accounting for between 1.9 and 9.7% of the total genetic variation in traits. 15. Index selection using breeding objectives was the most profitable selection method for radiata pine, but in the long term it may not be the most effective in dealing with negative genetic correlations between wood volume and quality traits. A combination of economic and biological approaches may be needed to deal with the strong adverse correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The requirement for Queensland, Northern Territory and Western Australian jurisdictions to ensure sustainable harvest of fish resources and their optimal use relies on robust information on the resource status. For grey mackerel (Scomberomorus semifasciatus) fisheries, each of these jurisdictions has their own management regime in their corresponding waters. The lack of information on stock structure of grey mackerel, however, means that the appropriate spatial scale of management is not known. As well, fishers require assurance of future sustainability to encourage investment and long-term involvement in a fishery that supplies lucrative overseas markets. These management and fisher-unfriendly circumstances must be viewed in the context of recent 3-fold increases in catches of grey mackerel along the Queensland east coast, combined with significant and increasing catches in other parts of the species' northern Australian range. Establishing the stock structure of grey mackerel would also immensely improve the relevance of resource assessments for fishery management of grey mackerel across northern Australia. This highlighted the urgent need for stock structure information for this species. The impetus for this project came from the strategic recommendations of the FRDC review by Ward and Rogers (2003), "Northern mackerel (Scombridae: Scomberomorus): current and future research needs" (Project No. 2002/096), which promoted the urgency for information on the stock structure of grey mackerel. In following these recommendations this project adopted a multi-technique and phased sampling approach as carried out by Buckworth et al (2007), who examined the stock structure of Spanish mackerel, Scomberomorus commerson, across northern Australia. The project objectives were to determine the stock structure of grey mackerel across their northern Australian range, and use this information to define management units and their appropriate spatial scales. We used multiple techniques concurrently to determine the stock structure of grey mackerel. These techniques were: genetic analyses (mitochondrial DNA and microsatellite DNA), otolith (ear bones) isotope ratios, parasite abundances, and growth parameters. The advantage of using this type of multi-technique approach was that each of the different methods is informative about the fish’s life history at different spatial and temporal scales. Genetics can inform about the evolutionary patterns as well as rates of mixing of fish from adjacent areas, while parasites and otolith microchemistry are directly influenced by the environment and so will inform about the patterns of movement during the fishes lifetime. Growth patterns are influenced by both genetic and environmental factors. Due to these differences the use of these techniques concurrently increases the likelihood of detecting different stocks where they exist. We adopted a phased sampling approach whereby sampling was carried out at broad spatial scales in the first year: east coast, eastern Gulf of Carpentaria (GoC), western GoC, and the NW Northern Territory (NW NT). By comparing the fish samples from each of these locations, and using each of the techniques, we tested the null hypothesis that grey mackerel were comprised of a single homogeneous population across northern Australia. Having rejected the null hypothesis we re-sampled the 1st year locations to test for temporal stability in stock structure, and to assess stock structure at finer spatial scales. This included increased spatial coverage on the east coast, the GoC, and WA. From genetic approaches we determined that there at least four genetic stocks of grey mackerel across northern Australia: WA, NW NT (Timor/Arafura), the GoC and the east Grey mackerel management units in northern Australia ix coast. All markers revealed concordant patterns showing WA and NW NT to be clearly divergent stocks. The mtDNA D-loop fragment appeared to have more power to resolve stock boundaries because it was able to show that the GoC and east coast QLD stocks were genetically differentiated. Patterns of stock structure on a finer scale, or where stock boundaries are located, were less clear. From otolith stable isotope analyses four major groups of S. semifasciatus were identified: WA, NT/GoC, northern east coast and central east coast. Differences in the isotopic composition of whole otoliths indicate that these groups must have spent their life history in different locations. The magnitude of the difference between the groups suggests a prolonged separation period at least equal to the fish’s life span. The parasite abundance analyses, although did not include samples from WA, suggest the existence of at least four stocks of grey mackerel in northern Australia: NW NT, the GoC, northern east coast and central east coast. Grey mackerel parasite fauna on the east coast suggests a separation somewhere between Townsville and Mackay. The NW NT region also appears to comprise a separate stock while within the GoC there exists a high degree of variability in parasite faunas among the regions sampled. This may be due to 1. natural variation within the GoC and there is one grey mackerel stock, or 2. the existence of multiple localised adult sub-stocks (metapopulations) within the GoC. Growth parameter comparisons were only possible from four major locations and identified the NW NT, the GoC, and the east coast as having different population growth characteristics. Through the use of multiple techniques, and by integrating the results from each, we were able to determine that there exist at least five stocks of grey mackerel across northern Australia, with some likelihood of additional stock structuring within the GoC. The major management units determined from this study therefore were Western Australia, NW Northern Territory (Timor/Arafura), the Gulf of Carpentaria, northern east Queensland coast and central east Queensland coast. The management implications of these results indicate the possible need for management of grey mackerel fisheries in Australia to be carried out on regional scales finer than are currently in place. In some regions the spatial scales of management might continue as is currently (e.g. WA), while in other regions, such as the GoC and the east coast, managers should at least monitor fisheries on a more local scale dictated by fishing effort and assess accordingly. Stock assessments should also consider the stock divisions identified, particularly on the east coast and for the GoC, and use life history parameters particular to each stock. We also emphasise that where we have not identified different stocks does not preclude the possibility of the occurrence of further stock division. Further, this study did not, nor did it set out to, assess the status of each of the stocks identified. This we identify as a high priority action for research and development of grey mackerel fisheries, as well as a management strategy evaluation that incorporates the conclusions of this work. Until such time that these priorities are addressed, management of grey mackerel fisheries should be cognisant of these uncertainties, particularly for the GoC and the Queensland east coast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘Sustainable Grazing in the Channel Country Floodplains’ was initiated by industry to redress the lack of objective information for sustainable management in the floodplains of Cooper Creek and the Diamantina and Georgina Rivers. The project has maintained links with the grazing community and has extensively drawn upon expert local experience and knowledge. The project has provided tools for managers to better anticipate the size of beneficial flooding arising from rains in the upper catchment and to more objectively assess the value of the pasture resulting from flooding. The latest information from the project has enabled customisation of the EDGENetwork™ Grazing Land Management training package for the Channel Country. In combination, these tools will assist in making earlier cattle stocking decisions, including when cattle may need to be mustered out of floodplain paddocks, how many additional cattle will be required to take advantage of the flood–grown pasture, and the timing of cattle turnoff. These will reduce costs by providing a greater lead time to plan cattle movements and purchases, and may enhance the sustainability of the resource base by better matching cattle numbers with the feed on offer.