4 resultados para Zimmerman, Dominikus, 1685-1766.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Resistance to the root-lesion nematode Pratylenchus thornei was sought in wheat from the West Asia and North Africa (WANA) region in the Watkins Collection (148 bread and 139 durum wheat accessions) and the McIntosh Collection (59 bread and 43 durum wheat accessions). It was considered that landraces from this region, encompassing the centres of origin of wheat and where P. thornei also occurs, could be valuable sources of resistance for use in wheat breeding. Resistance was determined by number of P. thornei/kg soil after the growth of the plants in replicated glasshouse experiments. On average, durum accessions produced significantly lower numbers of P. thornei than bread wheat accessions in both the Watkins and McIntosh Collections. Selected accessions with low P. thornei numbers were re-tested and 13 bread wheat and 10 durum accessions were identified with nematode numbers not significantly different from GS50a, a partially resistant bread wheat line used as a reference standard. These resistant accessions, which originated in Iran, Iraq, Syria, Egypt, Sudan, Morocco, and Tunisia, represent a resource of resistance genes in the primary wheat gene pool, which could be used in Australian wheat breeding programs to reduce the economic loss from P. thornei.
Resumo:
Soil water repellency occurs widely in horticultural and agricultural soils when very dry. The gradual accumulation and breakdown of surface organic matter over time produces wax-like organic acids, which coat soil particles preventing uniform entry of water into the soil. Water repellency is usually managed by regular surfactant applications. Surfactants, literally, are surface active agents (SURFace ACTive AgeNTS). Their mode of action is to reduce the surface tension of water, allowing it to penetrate and wet the soil more easily and completely. This practice improves water use efficiency (by requiring less water to wet the soil and by capturing rainfall and irrigation more effectively and rapidly). It also reduces nutrient losses through run-off erosion or leaching. These nutrients have the potential to pollute the surrounding environment and water courses. This project investigated potential improvements to standard practices (product combination and scheduling) for surfactant use to overcome localised dry spots on water repellent soils and thus improve turf quality and water use efficiency. Weather conditions for the duration of the trial prevented the identification of improved practices in terms of combination and scheduling. However, the findings support previous research that the use of soil surfactants decreased the time for water to infiltrate dry soil samples taken from a previously severely hydrophobic site. Data will be continually collected from this trial site on a private contractual basis, with the hope that improvements to standard practices will be observed during the drier winter months when moisture availability is a limiting factor for turfgrass growth and quality.
Resumo:
We present a case for using Global Community Innovation Platforms (GCIPs), an approach to improve innovation and knowledge exchange in international scientific communities through a common and open online infrastructure. We highlight the value of GCIPs by focusing on recent efforts targeting the ecological sciences, where GCIPs are of high relevance given the urgent need for interdisciplinary, geographical, and cross-sector collaboration to cope with growing challenges to the environment as well as the scientific community itself. Amidst the emergence of new international institutions, organizations, and meetings, GCIPs provide a stable international infrastructure for rapid and long-term coordination that can be accessed by any individual. This accessibility can be especially important for researchers early in their careers. Recent examples of early-career GCIPs complement an array of existing options for early-career scientists to improve skill sets, increase academic and social impact, and broaden career opportunities. We provide a number of examples of existing early-career initiatives that incorporate elements from the GCIPs approach, and highlight an in-depth case study from the ecological sciences: the International Network of Next-Generation Ecologists (INNGE), initiated in 2010 with support from the International Association for Ecology and 20 member institutions from six continents.
Resumo:
Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.