7 resultados para Yersinia pseudotuberculosis Infections
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Twelve nasal swabs were collected from yearling horses with respiratory distress and tested for equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4) by real-time PCR targeting the glycoprotein B gene. All samples were negative for EHV-1; however, 3 were positive for EHV-4. When these samples were tested for EHV-2 and EHV-5 by PCR, all samples were negative for EHV-2 and 11 were positive for EHV-5. All three samples that were positive for EHV-4 were also positive for EHV-5. These three samples gave a limited CPE in ED cells reminiscent of EHV-4 CPE. EHV-4 CPE was obvious after 3 days and was characterised by syncytia. None of the samples produced cytopathic effect (CPE) on African green monkey kidney (Vero) cells or hamster kidney (BSR) cells. Four of the samples, which were positive in the EHV-5 PCR, produced CPE on rabbit kidney (RK13) cells and equine dermis (ED) cells. EHV-5 CPE on both cell lines was slow and was apparent after four 7-day passages. On RK13 cells, the CPE was characteristic of equid herpesvirus, with the formation of syncytia. However, in ED cells, the CPE was characterised by ring-shaped syncytia. For the first time, a case of equine respiratory disease involving dual infection with EHV-4 and EHV-5 has been reported in Queensland (Australia). This was shown by simultaneously isolating EHV-4 and EHV-5 from clinical samples. EHV5 was recovered from all samples except one, suggesting that EHV5 was more prevalent in young horses than EHV2.
Resumo:
Faecal Egg Count Reduction Tests (FECRTs) for macrocyclic lactone (ML) and levamisole (LEV) drenches were conducted on two dairy farms in the subtropical, summer rainfall region of eastern Australia to determine if anthelmintic failure contributed to severe gastrointestinal nematode infections observed in weaner calves. Subtropical Cooperia spp. were the dominant nematodes on both farms although significant numbers of Haemonchus placei were also present on Farm 2. On Farm 1, moxidectin pour-on (MXD) drenched at 0.5 mg kg-1 liveweight (LW) reduced the overall Cooperia burden by 82% (95% confidence limits, 37-95%) at day 7 post-drench. As worm burdens increased rapidly in younger animals in the control group (n = 4), levamisole was used as a salvage drench and these calves withdrawn from the trial on animal welfare grounds after sample collection at day 7. Levamisole (LEV) dosed at 6.8 mg kg-1 LW reduced the worm burden in these calves by 100%, 7 days after drenching. On Farm 2, MXD given at 0.5 mg kg-1 LW reduced the faecal worm egg count of cooperioids at day 8 by 96% (71-99%), ivermectin oral (IVM) at 0.2 mg kg-1 LW by 1.6% (-224 to 70%) and LEV oral at 7.1 mg kg-1 LW by 100%. For H. placei the reductions were 98% (85-99.7%) for MXD, 0.7% (-226 to 70%) for IVM and 100% for LEV. This is the first report in Australia of the failure of macrocyclic lactone treatments to control subtropical Cooperia spp. and suspected failure to control H. placei in cattle.
Resumo:
This study aimed to assess the effect of tea tree oil based formulations against two major ectoparasitic diseases in the sheep industry, flystrike and louse infestation, and to provide data to assist the assessment of the commercial feasibility of development of tea tree oil based ectoparasiticides. The results demonstrate insecticidal effects against both sheep lice and blowflies and repellent effects against adult flies and maggots. Dipping sheep in a Tea Tree Oil based formulation appeared to completely eradicate lice and suggests its potential use in sheep dipping formulations. Repellent and insecticidal effects against sheep blowflies, together with previously reported anti-microbial and wound healing properties, suggest significant benefits from the inclusion of tea tree oil in flystrike and wound treatment formulations. These effects occurred at concentrations of Tea Tree Oil that suggest the commercial viability of development of Tea Tree Oil based formulations for sheep parasite control and wound treatment and a potential new market for Tea Tree Oil.
Resumo:
"Develop and optimise reliable in vitro culture methods for buffalo fly "Use the in vitro system to determine whether experimental Wolbachia infection can be established in buffalo fly. "Prepare further applications for related work towards better control of buffalo fly, exploiting the in vitro culture system.
Resumo:
To find out whether food-producing animals (FPAs) are a source of extraintestinal expanded-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) infections in humans, Medline, Embase, and the Cochrane Database of Systematic Reviews were systematically reviewed. Thirty-four original, peer-reviewed publications were identified for inclusion. Six molecular epidemiology studies supported the transfer of resistance via whole bacterium transmission (WBT), which was best characterized among poultry in the Netherlands. Thirteen molecular epidemiology studies supported transmission of resistance via mobile genetic elements, which demonstrated greater diversity of geography and host FPA. Seventeen molecular epidemiology studies did not support WBT and two did not support mobile genetic element-mediated transmission. Four observational epidemiology studies were consistent with zoonotic transmission. Overall, there is evidence that a proportion of human extraintestinal ESCR-EC infections originate from FPAs. Poultry, in particular, is probably a source, but the quantitative and geographical extent of the problem is unclear and requires further investigation.
Resumo:
Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.