12 resultados para Window gardening.

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asia's increasing demand for both tropical and temperate fruit is projected to grow significantly. Compared with most developed countries, the production of temperate fruits (peach, nectarine, plum and apple) has expanded rapidly in China over the past 20 years. In contrast, current production of plums and peaches in neighbouring countries (Thailand and Vietnam) is very low but their fruit enters the market earlier. Thailand and Vietnam have enormous potential to satisfy a market window in the northern hemisphere period from March to May inclusive when there is little or no stone fruit on the Asian market. In Vietnam, fruit is harvested in an immature state to avoid disease and fruit fly problems and consequently lacks size and flavour. Approximately 30-40% of locally produced fruit in Vietnam does not reach market due to disease and poor handling during picking and transport. In Thailand, much of the infrastructure needed to transport, store, process and market temperate fruits successfully are now in place. However, there are currently no cool chain management or quality assurance systems to ensure a fresh product reaches the consumer with minimal deterioration. In Vietnam, growing stone fruit under the traditional system with little or minimal inputs, the farmer may receive between AUD3,000-5,000 per ha. In comparison, under higher input systems incorporating fertiliser, irrigation and pest and disease management, net returns can be increased seven-fold. Strengths and weaknesses of the current supply chains in these two countries are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When investigating strategies for Helicoverpa armigera (Hubner) control, it is important to understand oviposition behaviour. Cotton (Gossypium hirsutum) was sown into standing wheat (Triticum astivum L.) stubble in a closed arena to investigate the effect of stubble on H. armigera moth behaviour and oviposition. Infrared cameras were used to track moths and determine whether stubble acted as a physical barrier or provided camouflage to cotton plants, thereby reducing oviposition. Searching activity was observed to peak shortly before dawn (03:00 and 04:00 h) and remained high until just after dawn (4 h window). Moths spent more time resting on cotton plants than spiralling above them, and the least time flying across the arena. While female moths spent more time searching for cotton plants growing in wheat stubble, the difference in oviposition was not significant. As similar numbers of eggs were laid on cotton plants with stubble (3.5/plant SE +/- 0.87) and without stubble (2.5/plant SE +/- 0.91), wheat stubble does not appear to provide camouflage to cotton plants. There was no significant difference in the location of eggs deposited on cotton plants with and without stubble, although more eggs were laid on the tops of cotton leaves in wheat stubble. As the spatial and temporal distribution of eggs laid on the cotton plant is a crucial component of population stability, eggs laid on the upper side of leaves on cotton plants may be more prone to fatalities caused by environmental factors such as wind and rain. Therefore, although stubble did not influence the number of eggs laid, it did affect their distribution on the plant, which may result in increased mortality of eggs on cotton plants sown into standing wheat stubble.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project reviewed international research conducted on the possible role of plants in alleviating high temperatures in our living spaces. The literature review served to identify the work that has already been carried out in the area and to highlight the gaps to be filled by experimental research. A pilot study then investigated the thermal properties of six of the most common landscaping materials. This project clearly shows that plants can play a significant role in modifying the thermal conditions of urban environments. Tall trees can shade nearby buildings and allow for reductions in cooling costs. In addition to basic shading, the dispersal of heat via the plant’s natural transpiration stream has long been recognised as an important component of the urban energy balance. It has been shown that urban temperatures can be up to 7°C higher than nearby rural areas, illustrating the impact of plants on their environment. These benefits argue against the idea of removing plants from landscapes in order to save on water in times of drought. Similarly, the idea of switching to artificial turf is questionable, since artificial turf still requires watering and can reach temperatures that far exceed the safe range for players. While vegetation offers evaporative cooling, non-vegetative, impervious surfaces such as concrete do not, and can therefore cause greater surface and soil temperatures. In addition, the higher temperatures associated with these impervious surfaces can negatively affect the growth of plants in surrounding areas. Permeable surfaces, such as mulches, have better insulating properties and can prevent excessive heating of the soil. However, they can also lead to an increase in reflected longwave radiation, causing the leaves of plants to close their water-conducting pores and reducing the beneficial cooling effects of transpiration. The results show that the energy balance of our surroundings is complicated and that all components of a landscape will have an impact on thermal conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project aims to provide further data to support the winter window option for interstate marker access for strawberries from south east Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project advances commercially desirable citrus selections that have resilient seedlessness. It builds on existing expertise and develops germplasm resources in the utilisation of interploid crossing for the production of new triploid hybrids with outstanding fruit quality. Advanced germplasm will progress toward commercialisation with fruit displays, and the production of a final generation of trees for semi-commercial plantings. At the opposite end of the breeding spectrum, new triploid hybrids will be produced. Growers will see triploid citrus from their national breeding project for the first time, providing a window on future new varieties that will emerge from the pipe-line of germplasm that has been developed through past project investment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a large gap between the refined approaches to characterise genotypes and the common use of location and season as a coarse surrogate for environmental characterisation of breeding trials. As a framework for breeding, the aim of this paper is quantifying the spatial and temporal patterns of thermal and water stress for field pea in Australia. We compiled a dataset for yield of the cv. Kaspa measured in 185 environments, and investigated the associations between yield and seasonal patterns of actual temperature and modelled water stress. Correlations between yield and temperature indicated two distinct stages. In the first stage, during crop establishment and canopy expansion before flowering, yield was positively associated with minimum temperature. Mean minimum temperature below similar to 7 degrees C suggests that crops were under suboptimal temperature for both canopy expansion and radiation-use efficiency during a significant part of this early growth period. In the second stage, during critical reproductive phases, grain yield was negatively associated with maximum temperature over 25 degrees C. Correlations between yield and modelled water supply/demand ratio showed a consistent pattern with three phases: no correlation at early stages of the growth cycle, a progressive increase in the association that peaked as the crop approached the flowering window, and a progressive decline at later reproductive stages. Using long-term weather records (1957-2010) and modelled water stress for 104 locations, we identified three major patterns of water deficit nation wide. Environment type 1 (ET1) represents the most favourable condition, with no stress during most of the pre-flowering phase and gradual development of mild stress after flowering. Type 2 is characterised by increasing water deficit between 400 degree-days before flowering and 200 degree-days after flowering and rainfall that relieves stress late in the season. Type 3 represents the more stressful condition with increasing water deficit between 400 degree-days before flowering and maturity. Across Australia, the frequency of occurrence was 24% for ET1, 32% for ET2 and 43% for ET3, highlighting the dominance of the most stressful condition. Actual yield averaged 2.2 t/ha for ET1, 1.9 t/ha for ET2 and 1.4 t/ha for ET3, and the frequency of each pattern varied substantially among locations. Shifting from a nominal (i.e. location and season) to a quantitative (i.e. stress type) characterisation of environments could help improving breeding efficiency of field pea in Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote detection of management-related trend in the presence of inter-annual climatic variability in the rangelands is difficult. Minimally disturbed reference areas provide a useful guide, but suitable benchmarks are usually difficult to identify. We describe a method that uses a unique conceptual framework to identify reference areas from multitemporal sequences of ground cover derived from Landsat TM and ETM+ imagery. The method does not require ground-based reference sites nor GIS layers about management. We calculate a minimum ground cover image across all years to identify locations of most persistent ground cover in years of lowest rainfall. We then use a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. This difference estimates ground-cover change between successive below-average rainfall years, which provides a seasonally interpreted measure of management effects. We examine the approach's sensitivity to window size and to cover-index percentiles used to define persistence. The method successfully detected management-related change in ground cover in Queensland tropical savanna woodlands in two case studies: (1) a grazing trial where heavy stocking resulted in substantial decline in ground cover in small paddocks, and (2) commercial paddocks where wet-season spelling (destocking) resulted in increased ground cover. At a larger scale, there was broad agreement between our analysis of ground-cover change and ground-based land condition change for commercial beef properties with different a priori ratings of initial condition, but there was also some disagreement where changing condition reflected pasture composition rather than ground cover. We conclude that the method is suitably robust to analyse grazing effects on ground cover across the 1.3 x 10(6) km(2) of Queensland's rangelands. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessing the impacts of climate variability on agricultural productivity at regional, national or global scale is essential for defining adaptation and mitigation strategies. We explore in this study the potential changes in spring wheat yields at Swift Current and Melfort, Canada, for different sowing windows under projected climate scenarios (i.e., the representative concentration pathways, RCP4.5 and RCP8.5). First, the APSIM model was calibrated and evaluated at the study sites using data from long term experimental field plots. Then, the impacts of change in sowing dates on final yield were assessed over the 2030-2099 period with a 1990-2009 baseline period of observed yield data, assuming that other crop management practices remained unchanged. Results showed that the performance of APSIM was quite satisfactory with an index of agreement of 0.80, R2 of 0.54, and mean absolute error (MAE) and root mean square error (RMSE) of 529 kg/ha and 1023 kg/ha, respectively (MAE = 476 kg/ha and RMSE = 684 kg/ha in calibration phase). Under the projected climate conditions, a general trend in yield loss was observed regardless of the sowing window, with a range from -24 to -94 depending on the site and the RCP, and noticeable losses during the 2060s and beyond (increasing CO2 effects being excluded). Smallest yield losses obtained through earlier possible sowing date (i.e., mid-April) under the projected future climate suggested that this option might be explored for mitigating possible adverse impacts of climate variability. Our findings could therefore serve as a basis for using APSIM as a decision support tool for adaptation/mitigation options under potential climate variability within Western Canada.