8 resultados para Whole
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.
Resumo:
The potential of spinosad as a grain protectant for the lesser grain borer, Rhyzopertha dominica, was investigated in a silo-scale trial on wheat stored in Victoria, Australia. Rhyzopertha dominica is a serious pest of stored grain, and its resistance to protectants and the fumigant phosphine is becoming more common. This trial follows earlier laboratory research showing that spinosad may be a useful pest management option for this species. Wheat (300 t) from the 2005 harvest was treated with spinosad 0.96 mg/kg plus chlorpyrifos-methyl 10 mg/kg in March 2006, and samples were collected at intervals during 7.5 month storage to determine efficacy and residues in wheat and milling fractions. Chlorpyrifos-methyl is already registered in Australia for control of several other pest species, and its low potency against R. dominica was confirmed in laboratory-treated wheat. Grain moisture content was stable at about 10%, but grain temperature ranged from 29.3°C in March to 14.0°C in August. Bioassays of all treated wheat samples over 7.5 months resulted in 100% adult mortality after 2 weeks exposure and no live progeny were produced. In addition, no live grain insects were detected during outload sampling after a 9 month storage. Spinosad and chlorpyrifos-methyl residues tended to decline during storage, and residues were higher in the bran layer than in either wholemeal or white flour. This field trial confirmed that spinosad was effective as a grain protectant targeting R. dominica.
Resumo:
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.
Resumo:
This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.
Resumo:
Fourier Transform (FT)-near infra-red spectroscopy (NIRS) was investigated as a non-invasive technique for estimating percentage (%) dry matter of whole intact 'Hass' avocado fruit. Partial least squares (PLS) calibration models were developed from the diffuse reflectance spectra to predict % dry matter, taking into account effects of seasonal variation. It is found that seasonal variability has a significant effect on model predictive performance for dry matter in avocados. The robustness of the calibration model, which in general limits the application for the technique, was found to increase across years (seasons) when more seasonal variability was included in the calibration set. The R-v(2) and RMSEP for the single season prediction models predicting on an independent season ranged from 0.09 to 0.61 and 2.63 to 5.00, respectively, while for the two season models predicting on the third independent season, they ranged from 0.34 to 0.79 and 2.18 to 2.50, respectively. The bias for single season models predicting an independent season was as high as 4.429 but <= 1.417 for the two season combined models. The calibration model encompassing fruit from three consecutive years yielded predictive statistics of R-v(2) = 0.89, RMSEP = 1.43% dry matter with a bias of -0.021 in the range 16.1-39.7% dry matter for the validation population encompassing independent fruit from the three consecutive years. Relevant spectral information for all calibration models was obtained primarily from oil, carbohydrate and water absorbance bands clustered in the 890-980, 1005-1050, 1330-1380 and 1700-1790 nm regions. These results indicate the potential of FT-NIRS, in diffuse reflectance mode, to non-invasively predict the % dry matter of whole 'Hass' avocado fruit and the importance of the development of a calibration model that incorporates seasonal variation. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16-45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
A high proportion of the Australian and New Zealand dairy industry is based on a relatively simple, low input and low cost pasture feedbase. These factors enable this type of production system to remain internationally competitive. However, a key limitation of pasture-based dairy systems is periodic imbalances between herd intake requirements and pasture DM production, caused by strong seasonality and high inter-annual variation in feed supply. This disparity can be moderated to a certain degree through the strategic management of the herd through altering calving dates and stocking rates, and the feedbase by conserving excess forage and irrigating to flatten seasonal forage availability. Australasian dairy systems are experiencing emerging market and environmental challenges, which includes increased competition for land and water resources, decreasing terms of trade, a changing and variable climate, an increasing environmental focus that requires improved nutrient and water-use efficiency and lower greenhouse gas emissions. The integration of complementary forages has long been viewed as a means to manipulate the home-grown feed supply, to improve the nutritive value and DM intake of the diet, and to increase the efficiency of inputs utilised. Only recently has integrating complementary forages at the whole-farm system level received the significant attention and investment required to examine their potential benefit. Recent whole-of-farm research undertaken in both Australia and New Zealand has highlighted the importance of understanding the challenges of the current feedbase and the level of complementarity between forage types required to improve profit, manage risk and/or alleviate/mitigate against adverse outcomes. This paper reviews the most recent systems-level research into complementary forages, discusses approaches to modelling their integration at the whole-farm level and highlights the potential of complementary forages to address the major challenges currently facing pasture-based dairy systems.