7 resultados para Wear

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wear resistance and recovery of 8 Bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid Bermudagrass (C. Dactylon x C. transvaalensis Burtt-Davey) cultivars grown on a sandbased soil profile near Brisbane, Australia, were assessed in 4 wear trials conducted over a two year period. Wear was applied on a 7-day or a 14-day schedule by a modified Brinkman Traffic Simulator for 6-14 weeks at a time, either during winter-early spring or during summer-early autumn. The more frequent wear under the 7-day treatment was more damaging to the turf than the 14-day wear treatment, particularly during winter when its capacity for recovery from wear was severely restricted. There were substantial differences in wear tolerance among the 8 cultivars investigated, and the wear tolerance rankings of some cultivars changed between years. Wear tolerance was associated with high shoot density, a dense stolon mat strongly rooted to the ground surface, high cell wall strength as indicated by high total cell wall content, and high levels of lignin and neutral detergent fiber. Wear tolerance was also affected by turf age, planting sod quality, and wet weather. Resistance to wear and recovery from wear are both important components of wear tolerance, but the relative importance of their contributions to overall wear tolerance varies seasonally with turf growth rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traction is recognised as an important component of the overall playability and safety of a sportsfield. It relates to the "grip", or footing, provided through an athlete's shoe when in contact with the surface, and is normally measured by the torque generated when a weighted studded disc apparatus is dropped onto the turf and twisted manually. This paper describes the development of an automated traction tester, which mechanises the dropping and twisting of the weighted studded disc. By standardising these operational stages, more repeatable and reliable results can be expected than from the original hand-operated design where positioning of the disc and speed of rotation are controlled manually and so can vary from one measurement to the next. As well as measuring the maximum torque reached during rotation of the studded disc, the automated traction tester generates a profile of torque showing changes over time and calculates the angle through which the studded disc moved before reaching maximum torque. These aspects are now covered by a utility patent (PAT/AU/2004270767). Use of the automated traction tester is illustrated by comparative data for a range of warm-season turfgrasses, by comparisons of traction under different surface conditions generated by wear on Cynodon dactylon cultivars, and by the effects of environment, management and playing patterns on traction across a multi-use sports stadium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft-leaf buffalo grass is increasing in popularity as an amenity turfgrass in Australia. This project was instigated to assess the adaptation of and establish management guidelines for its use in Australias vast array of growing environments. There is an extensive selection of soft-leaf buffalo grass cultivars throughout Australia and with the countrys changing climates from temperate in the south to tropical in the north not all cultivars are going to be adapted to all regions. The project evaluated 19 buffalo grass cultivars along with other warm-season grasses including green couch, kikuyu and sweet smother grass. The soft-leaf buffalo grasses were evaluated for their growth and adaptation in a number of regions throughout Australia including Western Australia, Victoria, ACT, NSW and Queensland. The growth habit of the individual cultivars was examined along with their level of shade tolerance, water use, herbicide tolerance, resistance to wear, response to nitrogen applications and growth potential in highly alkaline (pH) soils. The growth habit of the various cultivars currently commercially available in Australia differs considerably from the more robust type that spreads quicker and is thicker in appearance (Sir Walter, Kings Pride, Ned Kelly and Jabiru) to the dwarf types that are shorter and thinner in appearance (AusTine and AusDwarf). Soft-leaf buffalo grass types tested do not differ in water use when compared to old-style common buffalo grass. Thus, soft-leaf buffalo grasses, like other warm-season turfgrass species, are efficient in water use. These grasses also recover after periods of low water availability. Individual cultivar differences were not discernible. In high pH soils (i.e. on alkaline-side) some elements essential for plant growth (e.g. iron and manganese) may be deficient causing turfgrass to appear pale green, and visually unacceptable. When 14 soft-leaf buffalo grass genotypes were grown on a highly alkaline soil (pH 7.5-7.9), cultivars differed in leaf iron, but not in leaf manganese, concentrations. Nitrogen is critical to the production of quality turf. The methods for applying this essential element can be manipulated to minimise the maintenance inputs (mowing) during the peak growing period (summer). By applying the greatest proportion of the turfs total nitrogen requirements in early spring, peak summer growth can be reduced resulting in a corresponding reduction in mowing requirements. Soft-leaf buffalo grass cultivars are more shade and wear tolerant than other warm-season turfgrasses being used by homeowners. There are differences between the individual buffalo grass varieties however. The majority of types currently available would be classified as having moderate levels of shade tolerance and wear reasonably well with good recovery rates. The impact of wear in a shaded environment was not tested and there is a need to investigate this as this is a typical growing environment for many homeowners. The use of herbicides is required to maintain quality soft-leaf buffalo grass turf. The development of softer herbicides for other turfgrasses has seen an increase in their popularity. The buffalo grass cultivars currently available have shown varying levels of susceptibility to the chemicals tested. The majority of the cultivars evaluated have demonstrated low levels of phytotoxicity to the herbicides chlorsulfuron (Glean) and fluroxypyr (Starane and Comet). In general, soft leaf buffalo grasses are varied in their makeup and have demonstrated varying levels of tolerance/susceptibility/adaptation to the conditions they are grown under. Consequently, there is a need to choose the cultivar most suited to the environment it is expected to perform in and the management style it will be exposed to. Future work is required to assess how the structure of the different cultivars impacts on their capacity to tolerate wear, varying shade levels, water use and herbicide tolerance. The development of a growth model may provide the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chance seedling: observed in about 1989 as a distinctly coarser textured, densely matting, darker green mutant bermuda grass plant growing among the hybrid ‘Tifgreen’ on the eighth green at the Townsville Golf Course. Although ‘TL1’ was selected from a sward of the hybrid Bermuda grass ‘Tifgreen’, its inflorescence structure (4, not 3, racemes per inflorescence), agronomic attributes (e.g. its tolerance to certain herbicides), and its DNA profile are consistent with a chance seedling of Cynodon dactylon rather than a mutant plant of hybrid (C. dactylon x transvaalensis) origin. Selection criteria: exceptionally short stolon internodes resulting in an extremely tight knit stolon mat under close (c. 5-6 mm) but not very close (c. 3-4 mm) mowing; very deep, strong rhizome system; very dark green colour; tolerates shade better than other Australian bermuda grass varieties of common knowledge (except for ‘Plateau’A); and remains low growing under heavy tropical cloud cover even after 6-8 months. Designated ‘TL1’ by Tropical Lawns Pty Ltd and trialed successfully during the late 1990s and early 2000s in high wear situations (e.g. golf tees) in north Queensland. Propagation: vegetative. Breeder: Barry McDonagh, Townsville, QLD. PBR Certificate Number 2638, Application Number 2002/267, granted 24 February 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After more than 30 years in which ‘Tifgreen’ and ‘Tifdwarf’ were the only greens-quality varieties available, the choice for golf courses and bowls clubs in northern Australia has been expanded to include six new Cynodon hybrids [Cynodon dactylon (L.) Pers x Cynodon transvaalensis Burtt-Davy]. Five of these – ‘Champion Dwarf’ (Texas), ‘MS-Supreme’ (Mississippi), FloraDwarf™ (Florida), ‘TifEagle’ (Georgia), MiniVerde™ (Arizona) - are from US breeding programs, while the sixth, ‘TL2’ (marketed as Novotek™) was selected in north Queensland. The finer, denser and lower growing habit of the “ultradwarf” cultivars allows very low mowing heights (e.g. 2.5 mm) to be imposed, resulting in denser and smoother putting and bowls surfaces. In addition to the Cynodon hybrids, four new greens quality seashore paspalum (Paspalum vaginatum O. Swartz) cultivars including ‘Sea Isle 2000’, Sea Isle Supreme™, Velvetene™ and Sea Dwarf™ (where tolerance of salty water is required) expands the range of choices for greens in difficult environments. The project was developed to determine (a) the appropriate choice of cultivar for different environments and budgets, and (b) best management practices for the new cultivars which differ from the Cynodon hybrid industry standards ‘Tifgreen’ and ‘Tifdwarf’. Management practices, particularly fertilising, mowing heights and frequency, and thatch control were investigated to determine optimum management inputs and provide high quality playing surfaces with the new grasses. To enable effective trialling of these new and old cultivars it was essential to have a number of regional sites participating in the study. Drought and financial hardship of many clubs presented an initial setback with numerous clubs wanting to be involved in the study but were unable to commit due to their financial position at the time. The study was fortunate to have seven regional sites from Queensland, New South Wales, Victoria and South Australia volunteer to be involved in the study which would add to the results being collected at the centralised test facility being constructed at DEEDI’s Redlands Research Station. The major research findings acquired from the eight trial sites included: • All of the new second generation “ultradwarf” couchgrasses tend to produce a large amount of thatch with MiniVerde™ being the greatest thatch producer, particularly compared to ‘Tifdwarf’ and ‘Tifgreen’. The maintenance of the new Cynodon hybrids will require a program of regular dethatching/grooming as well as regular light dustings of sand. Thatch prevention should begin 3 to 4 weeks after planting a new “ultradwarf” couchgrass green, with an emphasis on prevention rather than control. • The “ultradwarfs” produced faster green speeds than the current industry standards ‘Tifgreen’ and ‘Tifdwarf’. However, all Cynodon hybrids were considerably faster than the seashore paspalums (e.g. comparable to the speed diference of Bentgrass and couchgrass) under trial conditions. Green speed was fastest being cut at 3.5 mm and rolled (compared to 3.5 mm cut, no roll and 2.7 mm cut, no roll). • All trial sites reported the occurrence of disease in the Cynodon hybrids with the main incidence of disease occurring during the dormancy period (autumn and winter). The main disease issue reported was “patch diseases” which includes both Gaumannomyces and Rhizoctonia species. There was differences in the severity of the disease between cultivars, however, the severity of the disease was not consistent between cultivars and is largely attributed to an environment (location) effect. In terms of managing the occurrence of disease, the incidence of disease is less severe where there is a higher fertility rate (about 3 kgN/100m2/year) or a preventitatve fungicide program is adopted. • Cynodon hybrid and seashore paspalum cultivars maintained an acceptable to ideal surface being cut between 2.7 mm and 5.0 mm. “Ultradwarf” cultivars can tolerate mowing heights as low as 2.5 mm for short periods but places the plant under high levels of stress. Greens being maintained at a continually lower cutting height (e.g. 2.7 mm) of both species is achievable, but would need to be cut daily for best results. Seashore paspalums performed best when cut at a height of between 2.7 mm and 3.0 mm. If a lower cutting height is adopted, regular and repeated mowings are required to reduce scalping and produce a smooth surface. • At this point in time the optimum rate of nitrogen (N) for the Cynodon hybrids is 3 kg/100m2/year and while the seashore paspalums is 2 to 3 kg/100m2/year. • Dormancy occurred for all Cynodon and seashore paspalum culitvars from north in Brisbane (QLD) to south in Mornington Peninsula (VIC) and west to Novar Gardens (SA). Cynodon and Paspalum growth in both Victoria and South Australia was less favourable as a result of the cooler climates. • After combining the data collected from all eight sites, the results indicated that there can be variation (e.g. turfgrass quality, colour, disease resistance, performace) depending on the site and climatic conditions. Such evidence highlights the need to undertake genotype by environment (G x E) studies on new and old cultivars prior to conversion or establishment. • For a club looking to select either a Cynodon hybrid or seashore paspalum cultivar for use at their club they need to: - Review the research data. - Look at trial plots. - Inspect greens in play that have the new grasses. - Select 2 to 3 cultivars that are considered to be the better types. - Establish them in large (large enough to putt on) plots/nursery/practice putter. Ideally the area should be subjected to wear. - Maintain them exactly as they would be on the golf course/lawn bowls green. This is a critical aspect. Regular mowing, fertilising etc. is essential. - Assess them over at least 2 to 3 years. - Make a selection and establish it in a playing green so that it is subjected to typical wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four-year Horticulture Australia (HAL) project is the first scientific study within Australia to assess simulated and actual wear studies of warm-season turfgrasses suitable for sportfield use. The study has allowed researchers and turf professionals to compare traffic (wear and compaction) tolerance and turf management requirements (e.g. mowing) of the current dominant varieties.