6 resultados para Warren County (N.J.)--Maps.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The genus Corymbia is closely related to the genus Eucalyptus, and like Eucalyptus contains tree species that are important for sub-tropical forestry. Corymbia's close relationship with Eucalyptus suggests genetic studies in Corymbia should benefit from transfer of genetic information from its more intensively studied relatives. Here we report a genetic map for Corymbia spp. based on microsatellite markers identified de novo in Corymbia sp or transferred from Eucalyptus. A framework consensus map was generated from an outbred F 2 population (n = 90) created by crossing two unrelated Corymbia torelliana x C. citriodora subsp. variegata F1 trees. The map had a total length of 367 cM (Kosambi) and was composed of 46 microsatellite markers distributed across 13 linkage groups (LOD 3). A high proportion of Eucalyptus microsatellites (90%) transferred to Corymbia. Comparative analysis between the Corymbia map and a published Eucalyptus map identified eight homeologous linkage groups in Corymbia with 13 markers mapping on one or both maps. Further comparative analysis was limited by low power to detect linkage due to low genome coverage in Corymbia, however, there was no convincing evidence for chromosomal structural differences because instances of non-synteny were associated with large distances on the Eucalyptus map. Segregation distortion was primarily restricted to a single linkage group and due to a deficit of hybrid genotypes, suggesting that hybrid inviability was one factor shaping the genetic composition of the F2 population in this inter-subgeneric hybrid. The conservation of microsatellite loci and synteny between Corymbia and Eucalyptus suggests there will be substantial value in exchanging information between the two groups.
Resumo:
Marker ordering during linkage map construction is a critical component of QTL mapping research. In recent years, high-throughput genotyping methods have become widely used, and these methods may generate hundreds of markers for a single mapping population. This poses problems for linkage analysis software because the number of possible marker orders increases exponentially as the number of markers increases. In this paper, we tested the accuracy of linkage analyses on simulated recombinant inbred line data using the commonly used Map Manager QTX (Manly et al. 2001: Mammalian Genome 12, 930-932) software and RECORD (Van Os et al. 2005: Theoretical and Applied Genetics 112, 30-40). Accuracy was measured by calculating two scores: % correct marker positions, and a novel, weighted rank-based score derived from the sum of absolute values of true minus observed marker ranks divided by the total number of markers. The accuracy of maps generated using Map Manager QTX was considerably lower than those generated using RECORD. Differences in linkage maps were often observed when marker ordering was performed several times using the identical dataset. In order to test the effect of reducing marker numbers on the stability of marker order, we pruned marker datasets focusing on regions consisting of tightly linked clusters of markers, which included redundant markers. Marker pruning improved the accuracy and stability of linkage maps because a single unambiguous marker order was produced that was consistent across replications of analysis. Marker pruning was also applied to a real barley mapping population and QTL analysis was performed using different map versions produced by the different programs. While some QTLs were identified with both map versions, there were large differences in QTL mapping results. Differences included maximum LOD and R-2 values at QTL peaks and map positions, thus highlighting the importance of marker order for QTL mapping
Resumo:
Background: Sorghum genome mapping based on DNA markers began in the early 1990s and numerous genetic linkage maps of sorghum have been published in the last decade, based initially on RFLP markers with more recent maps including AFLPs and SSRs and very recently, Diversity Array Technology (DArT) markers. It is essential to integrate the rapidly growing body of genetic linkage data produced through DArT with the multiple genetic linkage maps for sorghum generated through other marker technologies. Here, we report on the colinearity of six independent sorghum component maps and on the integration of these component maps into a single reference resource that contains commonly utilized SSRs, AFLPs, and high-throughput DArT markers. Results: The six component maps were constructed using the MultiPoint software. The lengths of the resulting maps varied between 910 and 1528 cM. The order of the 498 markers that segregated in more than one population was highly consistent between the six individual mapping data sets. The framework consensus map was constructed using a "Neighbours" approach and contained 251 integrated bridge markers on the 10 sorghum chromosomes spanning 1355.4 cM with an average density of one marker every 5.4 cM, and were used for the projection of the remaining markers. In total, the sorghum consensus map consisted of a total of 1997 markers mapped to 2029 unique loci ( 1190 DArT loci and 839 other loci) spanning 1603.5 cM and with an average marker density of 1 marker/0.79 cM. In addition, 35 multicopy markers were identified. On average, each chromosome on the consensus map contained 203 markers of which 58.6% were DArT markers. Non-random patterns of DNA marker distribution were observed, with some clear marker-dense regions and some marker-rare regions. Conclusion: The final consensus map has allowed us to map a larger number of markers than possible in any individual map, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across individual component maps, good agreement in overall distances between common marker pairs across the component maps used in this study was determined, using a difference ratio calculation. The obtained consensus map can be used as a reference resource for genetic studies in different genetic backgrounds, in addition to providing a framework for transferring genetic information between different marker technologies and for integrating DArT markers with other genomic resources. DArT markers represent an affordable, high throughput marker system with great utility in molecular breeding programs, especially in crops such as sorghum where SNP arrays are not publicly available.
Resumo:
Context: For over 100 years, control efforts have been unable to stop rabbits causing damage to cattle production and native plants and animals on large properties in arid parts of Australia. Warren destruction by ripping has shown promise, but doubts about long-term success and the perceived expense of treating vast areas have led to this technique not being commonly used. Aims: This study measured the long-term reduction in rabbit activity and calculated the potential cost saving associated with treating just the areas where rabbits are believed to survive drought. Wealso considered whether ripping should be used in a full-scale rabbit control program on a property where rabbits have been exceptionally resilient to the influence of biological and other control measures. Methods: Rabbits were counted along spotlight transects before warrens were ripped and during the two years after ripping, in treated and untreated plots. Rabbit activity was recorded to determine the immediate and long-term impact of ripping, up to seven years after treatment. The costs of ripping warrens within different distances from drought refuge areas were calculated. Key results: Destroying rabbit warrens by ripping caused an immediate reduction in rabbit activity and there were still 98% fewer rabbits counted by spotlight in ripped plots five months after ripping. Seven years after ripping no active warrens were found in ripped plots, whereas 57% of warrens in unripped plots showed signs of rabbit activity. The cost of ripping only the areas where rabbits were likely to seek refuge from drought was calculated to be less than 4%of the cost of ripping all warrens on the property. Conclusions: Destroying rabbit warrens by ripping is a very effective way of reducing rabbit numbers on large properties in arid Australia. Ripping should commence in areas used by rabbits to survive drought. It is possible that no further ripping will be required. Implications: Strategic destruction of warrens in drought refuge areas could provide an alternative to biological control for managing rabbits on large properties in the Australian arid zone.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.