9 resultados para WEIGHT FUNCTIONS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Seasonal conditions in the pre to post natal period and selected periods before and during wool growth were described using climatic measures and estimates of the quality and quantity of pasture on offer derived from a validated pasture production model (GRASP). The variation in greasy and clean fleece weight, yield, staple length, fibre diameter, neck and side wrinkle score of Merinos grazing Mitchell grass in north west Queensland was explained in terms of these pasture and climatic measures and animal characteristics such as reproductive status, age and skin area. Multiple regression equations predicting clean and greasy fleece weight from the proportion of days in the wool growth period that the green pool in the pasture was less than one kg/ha, the percentage utilisation of the pasture, age, reproductive status and skin area of the ewes explained 87% and 79% of the variation respectively. Equations with similar predictors explained 58-85% of the variation of the other components. The inclusion of pasture conditions in the pre to post natal period did not significantly improve the predictions of the animal’s later performance. 22nd Biennial Conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplements containing urea or biuret were fed in the dry season to yearling and two year old pregnant heifers grazing native spear grass pastures in north Queensland. Liveweight change and survival during the dry season and fertility in the following year were measured. In the first experiment during a relatively favourable dry season, supplementation significantly (P<0.01) reduced liveweight loss in yearling heifers (5 vs. 32 kg). In the following year during a drought, supplement significantly (P<.01) reduced liveweight loss in yearling heifers (32 vs. 41 kg) and significantly (P <0.01) reduced mortalities (23.5% vs. 5.2%) in pregnant and lactating heifers. The supplement had no significant effect on subsequent fertility in either experiment. 14th Biennial Conference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel weight is an important factor determining grain yield and nutritional quality in sorghum, yet the developmental processes underlying the genotypic differences in potential kernel weight remain unclear. The aim of this study was to determine the stage in development at which genetic effects on potential kernel weight were realized, and to investigate the developmental mechanisms by which potential kernel weight is controlled in sorghum. Kernel development was studied in two field experiments with five genotypes known to differ in kernel weight at maturity. Pre-fertilization floret and ovary development was examined and post-fertilization kernel-filling characteristics were analysed. Large kernels had a higher rate of kernel filling and contained more endosperm cells and starch granules than normal-sized kernels. Genotypic differences in kernel development appeared before stamen primordia initiation in the developing florets, with sessile spikelets of large-seeded genotypes having larger floret apical meristems than normal-seeded genotypes. At anthesis, the ovaries for large-sized kernels were larger in volume, with more cells per layer and more vascular bundles in the ovary wall. Across experiments and genotypes, there was a significant positive correlation between kernel dry weight at maturity and ovary volume at anthesis. Genotypic effects on meristem size, ovary volume, and kernel weight were all consistent with additive genetic control, suggesting that they were causally related. The pre-fertilization genetic control of kernel weight probably operated through the developing pericarp, which is derived from the ovary wall and potentially constrains kernel expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manual grading of prawns restricts the number that can be harvested. A restricted harvest size places a limit on the opposing within family and between family sources of selection pressure. A simulation study with inbreeding constrained at 0.5% per generation, a harvest size of 2000, heritability of 0.3, common family environmental effect of 0.1, indicates that maximum response to selection could be achieved with as few as 40 families. Increasing the number of families above 80 may reduce total selection response. It is important to be aware that increasing the number of families may not always yield a greater genetic response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides quantitative information on the effects of turtle excluder devices (TEDs) and bycatch reduction devices (BRDs) on the catch rates of bycatch, prawns, scallops and byproduct species, such as Moreton Bay bugs and Balmain bugs, in Queensland’s major trawl fishing sectors. It also provides biological information on, and management advice for several species referred to in the Fishery Management Plan as the permitted species. Several recommendations are included for reducing bycatch in the trawl fishery and for sustaining stocks of the permitted species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key message We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Abstract Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.