6 resultados para WATER-SOLUBLE POLYETHERS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In wheat, tillering and water-soluble carbohydrates (WSCs) in the stem are potential traits for adaptation to different environments and are of interest as targets for selective breeding. This study investigated the observation that a high stem WSC concentration (WSCc) is often related to low tillering. The proposition tested was that stem WSC accumulation is plant density dependent and could be an emergent property of tillering, whether driven by genotype or by environment. A small subset of recombinant inbred lines (RILs) contrasting for tillering was grown at different plant densities or on different sowing dates in multiple field experiments. Both tillering and WSCc were highly influenced by the environment, with a smaller, distinct genotypic component; the genotypeenvironment range covered 350750 stems m(2) and 25210mg g(1) WSCc. Stem WSCc was inversely related to stem number m(2), but genotypic rankings for stem WSCc persisted when RILs were compared at similar stem density. Low tilleringhigh WSCc RILs had similar leaf area index, larger individual leaves, and stems with larger internode cross-section and wall area when compared with high tilleringlow WSCc RILs. The maximum number of stems per plant was positively associated with growth and relative growth rate per plant, tillering rate and duration, and also, in some treatments, with leaf appearance rate and final leaf number. A common threshold of the red:far red ratio (0.390.44; standard error of the difference0.055) coincided with the maximum stem number per plant across genotypes and plant densities, and could be effectively used in crop simulation modelling as a ocut-off' rule for tillering. The relationship between tillering, WSCc, and their component traits, as well as the possible implications for crop simulation and breeding, is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the north-west of Mexico (CIANO) and sites across Australia during 3 seasons. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. Previously, we have evaluated both the performance of genotypes across environments and the genotype x environment interaction (G x E). The objective of this study was to interpret the G x E for yield in terms of crop attributes measured at individual sites and to identify the potential environmental drivers of this interaction. Groups of SBWs with consistent yield performance were identified, often comprising closely related lines. However, contrasting performance was also relatively common among sister lines or between a recurrent parent and its SBWs. Early flowering was a common feature among lines with broad adaptation and/or high yield in the northern Australian wheatbelt, while yields in the southern region did not show any association with the maturity type. Lines with high yields in the southern and northern regions had cooler canopies during flowering and early grain filling. Among the SBWs with Australian genetic backgrounds, lines best adapted to CIANO were tall (>100 cm), with a slightly higher ground cover. These lines also displayed a higher concentration of water-soluble carbohydrates in the stem at flowering, which was negatively correlated with stem number per unit area when evaluated in southern Australia (Horsham). Possible reasons for these patterns are discussed. Selection for yield at CIANO did not specifically identify the lines best adapted to northern Australia, although they were not the most poorly adapted either. In addition, groups of lines with specific adaptation to the south would not have been selected by choosing the highest yielding lines at CIANO. These findings suggest that selection at CIMMYT for Australian environments may be improved by either trait based selection or yield data combined with trait information. Flowering date, canopy temperature around flowering, tiller density, and water-soluble carbohydrate concentration in the stem at flowering seem likely candidates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of defoliation on Amarillo (Arachis pintoi cv. Amarillo) was studied in a glasshouse and in mixed swards with 2 tropical grasses. In the glasshouse, Amarillo plants grown in pots were subjected to a 30/20°C or 25/15°C temperature regime and to defoliation at 10-, 20- or 30-day intervals for 60 days. Two field plot studies were conducted on Amarillo with either irrigated kikuyu (Pennisetum clandestinum) in autumn and spring or dryland Pioneer rhodes grass (Chloris gayana) over summer and autumn. Treatments imposed were 3 defoliation intervals (7, 14 and 28 days) and 2 residual heights (5 and 10 cm for kikuyu; 3 and 10 cm for rhodes grass) with extra treatments (56 days to 3 cm for both grasses and 21 days to 5 cm for kikuyu). Defoliation interval had no significant effect on accumulated Amarillo leaf dry matter (DM) at either temperature regime. At the higher temperature, frequent defoliation reduced root dry weight (DW) and increased crude protein (CP) but had no effect on stolon DW or in vitro organic matter digestibility (OMD). On the other hand, at the lower temperature, frequent defoliation reduced stolon DW and increased OMD but had no effect on root DW or CP. Irrespective of temperaure and defoliation, water-soluble carbohydrate levels were higher in stolons than in roots (4.70 vs 3.65%), whereas for starch the reverse occured (5.37 vs 9.44%). Defoliating the Amarillo-kikuyu sward once at 56 days to 3 cm produced the highest DM yield in autumn and sprong (582 and 7121 kg/ha DM, respectively), although the Amarillo component and OMD were substantially reduced. Highest DM yields (1726 kg/ha) were also achieved in the Amarillo-rhodes grass sward when defoliated every 56 days to 3 cm, although the Amarillo component was unaffected. In a mixed sward with either kikuyu or rhodes grass, the Amarillo component in the sward was maintained up to a 28-day defoliation interval and was higher when more severely defoliated. The results show that Amarillo can tolerate frequent defoliation and that it can co-exist with tropical grasses of differing growth habits, provided the Amarillo-tropical grass sward is subject to frequent and severe defoliation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An understanding of processes regulating wheat floret and grain number at higher temperatures is required to better exploit genetic variation. In this study we tested the hypothesis that at higher temperatures, a reduction in floret fertility is associated with a decrease in soluble sugars and this response is exacerbated in genotypes low in water soluble carbohydrates (WSC). Four recombinant inbred lines contrasting for stem WSC were grown at 20/10 degrees C and 11 h photoperiod until terminal spikelet, and then continued in a factorial combination of 20/10 degrees C or 28/14 degrees C with 11 h or 16 h photoperiod until anthesis. Across environments, High WSC lines had more grains per spike associated with more florets per spike. The number of fertile florets was associated with spike biomass at booting and, by extension, with glucose amount, both higher in High WSC lines. At booting, High WSC lines had higher fixed C-13 and higher levels of expression of genes involved in photosynthesis and sucrose transport and lower in sucrose degradation compared with Low WSC lines. At higher temperature, the intrinsic rate of floret development rate before booting was slower in High WSC lines. Grain set declined with the intrinsic rate of floret development before booting, with an advantage for High WSC lines at 28/14 degrees C and 16 h. Genotypic and environmental action on floret fertility and grain set was summarised in a model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Campylobacter occur in fresh retail poultry products as a result of their colonization of the gastro-intestinal tract of chickens during growth. Feed additives could be used for suppression of Campylobacter levels in the chickens prior to slaughter. To address this opportunity, feed manufacturers are targeting natural antimicrobials from plant material as new forms of consumer-accepted feed additives. However, to be practical, these natural antimicrobials must be effective at low concentrations. The current study has validated an improved laboratory method to study minimal inhibitory concentrations of plant compounds and their combinations against Campylobacter. The assay was shown to be valid for testing lipid-soluble and water-soluble plant extracts and byproducts from the food industry. The study screened 29 extracts or plant-derived compounds and their mixtures for anti-Campylobacter activity using a laboratory assay. Combinations of oregano, lactic acid, and sorghum byproduct showed effective synergy in anti-Campylobacter activity. The synergies allowed a large reduction in the concentration of the individual compounds needed to kill the bacteria with an 80% reduction in concentration being achieved for oregano essential oil. The assay gives rise to further opportunities for the testing of a greater range of combinations of plant-derived compounds and other natural antimicrobials. The method is robust, simple, and easily automated, and it could be used to adjust the cost of feed formulations by reducing costs associated with antimicrobial feed additives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phenolic ellagic acid (EA) is receiving increasing attention for its nutritional and pharmacological potential as an antioxidant and antimicrobial agent. The Australian native Kakadu plum (Terminalia ferdinandiana) fruit is an abundant source of this phytochemical. The fruit also contains large amounts of vitamin C (mainly as ascorbic acid, AA) and possibly the undesirable oxalic acid (OA). Regular consumption of high oxalate foods poses a variety of health risks in humans including interference with calcium absorption and kidney stone formation. Oxalate is also the end-product of AA metabolism so that consumption of fruit with heightened AA content has the potential to elevate urinary oxalate levels. The aims of this study were to investigate the distribution of EA and the presence of other bioactives in other Kakadu plum tissues. Chemical analysis of Kakadu plum fruit and leaves for EA (free and total), OA (water-soluble and total), calcium (Ca) and AA indicated that EA and AA concentrations were high in the fruit while the leaves had significantly higher EA levels but little or no detectable AA. OA content in fruit and leaves was substantial with the fruit being placed in the high-Oxalate category. These findings suggest that there is potential to elevate oxalate levels in the urine of susceptible people and intake of fruit-derived products should be closely monitored. By measuring tissues collected from specific trees, high EA-producing or low OA-containing individuals were identified.