12 resultados para Volunteer Programs
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The aim of the pedigree-based genome mapping project is to investigate and develop systems for implementing marker assisted selection to improve the efficiency of selection and increase the rate of genetic gain in breeding programs. Pedigree-based whole genome marker application provides a vehicle for incorporating marker technologies into applied breeding programs by bridging the gap between marker-trait association and marker implementation. We report on the development of protocols for implementation of pedigree-based whole genome marker analysis in breeding programs within the Australian northern winter cereals region. Examples of applications from the Queensland DPI&F wheat and barley breeding programs are provided, commenting on the use of microsatellites and other types of molecular markers for routine genomic analysis, the integration of genotypic, phenotypic and pedigree information for targeted wheat and barley lines, the genomic impacts of strong selection pressure in case study pedigrees, and directions for future pedigree-based marker development and analysis.
Resumo:
Hazard site surveillance is a system for post-border detection of new pest incursions, targeting sites that are considered potentially at high risk of such introductions. Globalisation, increased volumes of containerised freight and competition for space at domestic ports means that goods are increasingly being first opened at premises some distance from the port of entry, thus dispersing risk away from the main inspection point. Hazard site surveillance acts as a backstop to border control to ensure that new incursions are detected sufficiently early to allow the full range of management options, including eradication and containment, to be considered. This is particularly important for some of the more cryptic forest pests whose presence in a forest often is not discovered until populations are already high and the pest is well established. General requirements for a hazard site surveillance program are discussed using a program developed in Brisbane, Australia, in 2006 as a case study. Some early results from the Brisbane program are presented. In total 67 species and 5757 individuals of wood-boring beetles have been trapped and identified during the program to date. Scolytines are the most abundant taxa, making up 83% of the catch. No new exotics have been trapped but 19 of the species and 60% of all specimens caught are exotics that are already established in Australia.
Resumo:
Many forces are driving the global demand for assurance that fruit and vegetables are safe to eat and of the right quality, and are produced and handled in a manner that does not cause harm to the environment and the health, safety and welfare of workers. The impact of these driving forces is that retailer requirements for suppliers to comply with Good Agricultural Practice (GAP) is increasing and governments are strengthening legal requirements for food safety, environmental protection, and worker health, safety and welfare. The implementation of GAP programs currently within the ASEAN (Association of South East Asian Nations) region varies, with some countries having government certified systems and others beginning the journey with awareness programs for farmers. Under a project funded by the ASEAN Australia Development Cooperation Program, a standard for ASEAN GAP has been developed to harmonise GAP Programs in the region. The goal is to facilitate trade between ASEAN countries and to global markets, improve viability for farmers, and help sustain a safe food supply and the environment. ASEAN GAP is an umbrella standard that individual member countries will benchmark their national programs against to gain equivalence. The scope of ASEAN GAP covers the production, harvesting and postharvest handling of fresh fruit and vegetables on farm and postharvest handling in locations where produce is packed for sale. ASEAN GAP consists of four modules covering food safety, environmental management, worker health, safety and welfare, and produce quality. Each module can be used alone or in combination with other modules. This enables progressive implementation of ASEAN GAP, module by module based on individual country priorities.
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
Fibre diameter can vary dramatically along a wool staple, especially in the Mediterranean environment of southern Australia with its dry summers and abundance of green feed in spring. Other research results have shown a very low phenotypic correlation between fibre diameter grown between seasons. Many breeders use short staples to measure fibre diameter for breeding purposes and also to promote animals for sale. The effectiveness of this practice is determined by the relative response to selection by measuring fibre traits on a full 12 months wool staple as compared to measuring them only on part of a staple. If a high genetic correlation exists between the part record and the full record, then using part records may be acceptable to identify genetically superior animals. No information is available on the effectiveness of part records. This paper investigated whether wool growth and fibre diameter traits of Merino wool grown at different times of the year in a Mediterranean environment, are genetically the same trait, respectively. The work was carried out on about 7 dyebanded wool sections/animal.year, on ewes from weaning to hogget age, in the Katanning Merino resource flocks over 6 years. Relative clean wool growth of the different sections had very low heritability estimates of less than 0.10, and they were phenotypically and genetically poorly correlated with 6 or 12 months wool growth. This indicates that part record measurement of clean wool growth of these sections will be ineffective as indirect selection criteria to improve wool growth genetically. Staple length growth as measured by the length between dyebands, would be more effective with heritability estimates of between 0.20 and 0.30. However, these measurements were shown to have a low genetic correlation with wool grown for 12 months which implies that these staple length measurements would only be half as efficient as the wool weight for 6 or 12 months to improve total clean wool weight. Heritability estimates of fibre diameter, coefficient of variation of fibre diameter and fibre curvature were relatively high and were genetically and phenotypically highly correlated across sections. High positive phenotypic and genetic correlations were also found between fibre diameter, coefficient of variation of fibre diameter and fibre curvature of the different sections and similar measurements for wool grown over 6 or 12 months. Coefficient of variation of fibre diameter of the sections also had a moderate negative phenotypic and genetic correlation with staple strength of wool staples grown over 6 months indicating that coefficient of variation of fibre diameter of any section would be as good an indirect selection criterion to improve stable strength as coefficient of variation of fibre diameter for wool grown over 6 or 12 months. The results indicate that fibre diameter, coefficient of variation of fibre diameter and fibre curvature of wool grown over short periods of time have virtually the same heritability as that of wool grown over 12 months, and that the genetic correlation between fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part and on full records is very high (rg > 0.85). This indicates that fibre diameter, coefficient of variation of fibre diameter and fibre curvature on part records can be used as selection criteria to improve these traits. However, part records of greasy and clean wool growth would be much less efficient than fleece weight for wool grown over 6 or 12 months because of the low heritability of part records and the low genetic correlation between these traits on part records and on wool grown for 12 months.
Resumo:
Evaluating progress towards eradication is critically important because weed eradication programs are very expensive and may take more than 10 years to complete. The degree of confidence that can be placed in any measure of eradication progress is a function of the effort that has been invested in finding new infestations and in monitoring known infestations. Determining eradication endpoints is particularly difficult, since plants may be extremely difficult to detect when at low densities and it is virtually impossible to demonstrate seed bank exhaustion. Recent work suggests that an economic approach to this problem should be adopted. They propose some rules of thumb to determine whether to continue an eradication program or switch to an alternative management strategy.
Resumo:
Weed eradication programs often require 10 years or more to achieve their objective. It is important that progress is evaluated on a regular basis so that programs that are 'on track' can be distinguished from those that are unlikely to succeed. Earlier research has addressed conformity of eradication programs to the delimitation criterion. In this paper evaluation in relation to the containment and extirpation criteria is considered. Because strong evidence of containment failure (i.e. spread from infestations targeted for eradication) is difficult to obtain, it generally will not be practicable to evaluate how effective eradication programs are at containing the target species. However, chronic failure of containment will be reflected in sustained increases in cumulative infested area and thus a failure to delimit a weed invasion. Evaluating the degree of conformity to the delimitation and extirpation criteria is therefore sufficient to give an appraisal of progress towards the eradication objective. A significant step towards eradication occurs when a weed is no longer readily detectable at an infested site, signalling entry to the monitoring phase. This transition will occur more quickly if reproduction is prevented consistently. Where an invasion consists of multiple infestations, the monitoring profile (frequency distribution of time since detection) provides a summary of the overall effectiveness of the eradication program in meeting the extirpation criterion. Eradication is generally claimed when the target species has not been detected for a period equal to or greater than its seed longevity, although there is often considerable uncertainty in estimates of the latter. Recently developed methods, which take into consideration the cost of continued monitoring vs. the potential cost of damage should a weed escape owing to premature cessation of an eradication program, can assist managers to decide when to terminate weed eradication programs.
Resumo:
Considerable progress has been made towards the successful classical biological control of many of Australia’s exotic weeds over the past decade. Some 43 new arthropod or pathogen agents were released in 19 projects. Effective biological control was achieved in several projects with the outstanding successes being the control of rubber vine, Cryptostegia grandiflora, and bridal creeper, Asparagus asparagoides. Significant developments also occurred in target prioritization, procedures for target and agent approval, funding, infrastructure and cooperation between agencies. Scientific developments included greater emphasis on climate matching, plant and agent phylogeny, molecular diagnostics, agent prioritization and agent evaluation.
Resumo:
After more than 30 years in which ‘Tifgreen’ and ‘Tifdwarf’ were the only greens-quality varieties available, the choice for golf courses and bowls clubs in northern Australia has been expanded to include six new Cynodon hybrids [Cynodon dactylon (L.) Pers x Cynodon transvaalensis Burtt-Davy]. Five of these – ‘Champion Dwarf’ (Texas), ‘MS-Supreme’ (Mississippi), FloraDwarf™ (Florida), ‘TifEagle’ (Georgia), MiniVerde™ (Arizona) - are from US breeding programs, while the sixth, ‘TL2’ (marketed as Novotek™) was selected in north Queensland. The finer, denser and lower growing habit of the “ultradwarf” cultivars allows very low mowing heights (e.g. 2.5 mm) to be imposed, resulting in denser and smoother putting and bowls surfaces. In addition to the Cynodon hybrids, four new greens quality seashore paspalum (Paspalum vaginatum O. Swartz) cultivars including ‘Sea Isle 2000’, Sea Isle Supreme™, Velvetene™ and Sea Dwarf™ (where tolerance of salty water is required) expands the range of choices for greens in difficult environments. The project was developed to determine (a) the appropriate choice of cultivar for different environments and budgets, and (b) best management practices for the new cultivars which differ from the Cynodon hybrid industry standards ‘Tifgreen’ and ‘Tifdwarf’. Management practices, particularly fertilising, mowing heights and frequency, and thatch control were investigated to determine optimum management inputs and provide high quality playing surfaces with the new grasses. To enable effective trialling of these new and old cultivars it was essential to have a number of regional sites participating in the study. Drought and financial hardship of many clubs presented an initial setback with numerous clubs wanting to be involved in the study but were unable to commit due to their financial position at the time. The study was fortunate to have seven regional sites from Queensland, New South Wales, Victoria and South Australia volunteer to be involved in the study which would add to the results being collected at the centralised test facility being constructed at DEEDI’s Redlands Research Station. The major research findings acquired from the eight trial sites included: • All of the new second generation “ultradwarf” couchgrasses tend to produce a large amount of thatch with MiniVerde™ being the greatest thatch producer, particularly compared to ‘Tifdwarf’ and ‘Tifgreen’. The maintenance of the new Cynodon hybrids will require a program of regular dethatching/grooming as well as regular light dustings of sand. Thatch prevention should begin 3 to 4 weeks after planting a new “ultradwarf” couchgrass green, with an emphasis on prevention rather than control. • The “ultradwarfs” produced faster green speeds than the current industry standards ‘Tifgreen’ and ‘Tifdwarf’. However, all Cynodon hybrids were considerably faster than the seashore paspalums (e.g. comparable to the speed diference of Bentgrass and couchgrass) under trial conditions. Green speed was fastest being cut at 3.5 mm and rolled (compared to 3.5 mm cut, no roll and 2.7 mm cut, no roll). • All trial sites reported the occurrence of disease in the Cynodon hybrids with the main incidence of disease occurring during the dormancy period (autumn and winter). The main disease issue reported was “patch diseases” which includes both Gaumannomyces and Rhizoctonia species. There was differences in the severity of the disease between cultivars, however, the severity of the disease was not consistent between cultivars and is largely attributed to an environment (location) effect. In terms of managing the occurrence of disease, the incidence of disease is less severe where there is a higher fertility rate (about 3 kgN/100m2/year) or a preventitatve fungicide program is adopted. • Cynodon hybrid and seashore paspalum cultivars maintained an acceptable to ideal surface being cut between 2.7 mm and 5.0 mm. “Ultradwarf” cultivars can tolerate mowing heights as low as 2.5 mm for short periods but places the plant under high levels of stress. Greens being maintained at a continually lower cutting height (e.g. 2.7 mm) of both species is achievable, but would need to be cut daily for best results. Seashore paspalums performed best when cut at a height of between 2.7 mm and 3.0 mm. If a lower cutting height is adopted, regular and repeated mowings are required to reduce scalping and produce a smooth surface. • At this point in time the optimum rate of nitrogen (N) for the Cynodon hybrids is 3 kg/100m2/year and while the seashore paspalums is 2 to 3 kg/100m2/year. • Dormancy occurred for all Cynodon and seashore paspalum culitvars from north in Brisbane (QLD) to south in Mornington Peninsula (VIC) and west to Novar Gardens (SA). Cynodon and Paspalum growth in both Victoria and South Australia was less favourable as a result of the cooler climates. • After combining the data collected from all eight sites, the results indicated that there can be variation (e.g. turfgrass quality, colour, disease resistance, performace) depending on the site and climatic conditions. Such evidence highlights the need to undertake genotype by environment (G x E) studies on new and old cultivars prior to conversion or establishment. • For a club looking to select either a Cynodon hybrid or seashore paspalum cultivar for use at their club they need to: - Review the research data. - Look at trial plots. - Inspect greens in play that have the new grasses. - Select 2 to 3 cultivars that are considered to be the better types. - Establish them in large (large enough to putt on) plots/nursery/practice putter. Ideally the area should be subjected to wear. - Maintain them exactly as they would be on the golf course/lawn bowls green. This is a critical aspect. Regular mowing, fertilising etc. is essential. - Assess them over at least 2 to 3 years. - Make a selection and establish it in a playing green so that it is subjected to typical wear.
Resumo:
This project addresses the R&D priority for an Environmentally Sustainable Queensland through the strategy of developing and implementing ecologically sustainable fishing practices. The principal findings of this research project will be discussed at a national workshop with the twin goals of promoting an understanding of the major elements of sustainable fish stocking practices and discussing and planning the way forward for the implementation of change. The workshop participants will include fisheries managers, representatives from interested community groups and other stakeholders.
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).
Resumo:
An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).