13 resultados para Viral vaccines

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is widely distributed in cattle industries and causes significant economic losses worldwide annually. A limiting factor in the development of subunit vaccines for BVDV is the need to elicit both antibody and T-cell-mediated immunity as well as addressing the toxicity of adjuvants. In this study, we have prepared novel silica vesicles (SV) as the new generation antigen carriers and adjuvants. With small particle size of 50 nm, thin wall (similar to 6 nm), large cavity (similar to 40 nm) and large entrance size (5.9 nm for SV-100 and 16 nm for SV-140), the SV showed high loading capacity (similar to 250 mu g/mg) and controlled release of codon-optimised E2 (oE2) protein, a major immunogenic determinant of BVDV. The in vivo functionality of the system was validated in mice immunisation trials comparing oE2 plus Quil A (50 mu g of oE2 plus 10 mu g of Quil A, a conventional adjuvant) to the oE2/SV-140 (50 mu g of oE2 adsorbed to 250 mu g of SV-140) or oE2/SV-140 together with 10 mu g of Quil A. Compared to the oE2 plus Quil A, which generated BVDV specific antibody responses at a titre of 10(4), the oE2/SV-140 group induced a 10 times higher antibody response. In addition, the cell-mediated response, which is essential to recognise and eliminate the invading pathogens, was also found to be higher [1954-2628 spot forming units (SFU)/million cells] in mice immunised with oE2/SV-140 in comparison to oE2 plus Quil A (512-1369 SFU/million cells). Our study has demonstrated that SV can be used as the next-generation nanocarriers and adjuvants for enhanced veterinary vaccine delivery. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peanut (Arachis hypogaea L.) lines exhibiting high levels of resistance to peanut stripe virus (PStV) were obtained following microprojectile bombardment of embryogenic callus derived from mature seeds. Fertile plants of the commercial cultivars Gajah and NC7 were regenerated following co-bombardmentwith the hygromycin resistance gene and one of two forms of the PStV coat protein (CP) gene, an untranslatable, full length sequence (CP2) or a translatable gene encoding a CP with an N-terminal truncation (CP4). High level resistance to PStV was observed for both transgenes when plants were challenged with the homologous virus isolate. The mechanism of resistance appears to be RNA-mediated, since plants carrying either the untranslatable CP2 or CP4 had no detectable protein expression, but were resistant or immune (no virus replication). Furthermore, highly resistant, but not susceptible CP2 T0 plants contained transgene-specific small RNAs. These plants now provide important germplasm for peanut breeding, particularly in countries where PStV is endemic and poses a major constraint to peanut production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A previously published partial sequence of pineapple bacilliform virus was shown to be from a retrotransposon (family Metaviridae) and not from a badnavirus as previously thought. Two newly discovered sequence groups isolated from pineapple were associated with bacilliform virions and were transmitted by mealybugs. Phylogenetic analyses indicated that they were members of new badnavirus species. A third caulimovirid sequence was also amplified from pineapple, but available evidence suggests that this DNA is not encapsidated, but more likely derived from an endogenous virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious coryza is an upper respiratory tract disease of chickens with the major impact occurring in multi-age flocks. We investigated the relationship between the level of antibodies, as detected by a haemagglutination-inhibition (HI) assay, in infectious coryza-vaccinated chickens and the protection against challenge in those chickens. In one experiment, chickens given a single dose of either of two infectious coryza vaccines lacked a detectable HI response to vaccination but showed significant levels of protection 11 weeks after vaccination. In contrast, in chickens given two doses of an infectious coryza vaccine and challenged 3 weeks after the second vaccine dose, there was a strong serological response with 36/40 birds having a HI titre of 1/20 or greater. In this trial there was an apparent relationship between titre and subsequent protection, with none of the 32 chickens with a titre of 1/40 or 1/80 showing any clinical signs and only one of the same group yielding the challenge organism on culture. In contrast, three of the four vaccinated chickens with a HI titre less than 1/5 developed the typical clinical signs of coryza and yielded the challenge organism on culture. Overall, our results suggest that HI titres cannot be regarded as a definitive predictor of vaccine efficacy. We suggest that the vaccination-challenge trial is the gold standard for the evaluation of the immune response to infectious coryza vaccines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrated viral disease management in vegetable crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 [small mu ]g Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 [small mu ]g dose of E2 adsorbed to 250 [small mu ]g HMSA was compared to immunisation with Opti-E2 (50 [small mu ]g) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 [small mu ]g). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infectious coryza is an upper respiratory disease of chickens caused by Avibacterium paragallinarum. Outbreaks of infectious coryza caused by Av. paragallinarum serovar C-1 isolates in coryza-vaccinated flocks in Ecuador and Mexico have been reported. In the current study, the protection conferred by four commercially available, trivalent infectious coryza vaccines in chickens challenged with a serovar C-1 isolate from an apparent coryza vaccine failure in a layer flock in Mexico was evaluated. Only one infectious coryza vaccine provided a good protection level (83%) in vaccinated chickens. These results might explain the infectious coryza outbreaks in vaccinated flocks that have been observed in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pteropid bats or flying-foxes (Chiroptera: Pteropodidae) are the natural host of Hendra virus (HeV) which sporadically causes fatal disease in horses and humans in eastern Australia. While there is strong evidence that urine is an important infectious medium that likely drives bat to bat transmission and bat to horse transmission, there is uncertainty about the relative importance of alternative routes of excretion such as nasal and oral secretions, and faeces. Identifying the potential routes of HeV excretion in flying-foxes is important to effectively mitigate equine exposure risk at the bat-horse interface, and in determining transmission rates in host-pathogen models. The aim of this study was to identify the major routes of HeV excretion in naturally infected flying-foxes, and secondarily, to identify between-species variation in excretion prevalence. A total of 2840 flying-foxes from three of the four Australian mainland species (Pteropus alecto, P. poliocephalus and P. scapulatus) were captured and sampled at multiple roost locations in the eastern states of Queensland and New South Wales between 2012 and 2014. A range of biological samples (urine and serum, and urogenital, nasal, oral and rectal swabs) were collected from anaesthetized bats, and tested for HeV RNA using a qRT-PCR assay targeting the M gene. Forty-two P. alecto (n = 1410) had HeV RNA detected in at least one sample, and yielded a total of 78 positive samples, at an overall detection rate of 1.76% across all samples tested in this species (78/4436). The rate of detection, and the amount of viral RNA, was highest in urine samples (>serum, packed haemocytes >faecal >nasal >oral), identifying urine as the most plausible source of infection for flying-foxes and for horses. Detection in a urine sample was more efficient than detection in urogenital swabs, identifying the former as the preferred diagnostic sample. The detection of HeV RNA in serum is consistent with haematogenous spread, and with hypothesised latency and recrudesence in flying-foxes. There were no detections in P. poliocephalus (n = 1168 animals; n = 2958 samples) or P. scapulatus (n = 262 animals; n = 985 samples), suggesting (consistent with other recent studies) that these species are epidemiologically less important than P. alecto in HeV infection dynamics. The study is unprecedented in terms of the individual animal approach, the large sample size, and the use of a molecular assay to directly determine infection status. These features provide a high level of confidence in the veracity of our findings, and a sound basis from which to more precisely target equine risk mitigation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine respiratory disease (BRD) is the most important cause of clinical disease and death in feedlot cattle. Respiratory viral infections are key components in predisposing cattle to the development of this disease. To quantify the contribution of four viruses commonly associated with BRD, a case-control study was conducted nested within the National Bovine Respiratory Disease Initiative project population in Australian feedlot cattle. Effects of exposure to Bovine viral diarrhoea virus 1 (BVDV-1), Bovine herpesvirus 1 (BoHV-1), Bovine respiratory syncytial virus (BRSV) and Bovine parainfluenza virus 3 (BPIV-3), and to combinations of these viruses, were investigated. Based on weighted seroprevalences at induction (when animals were enrolled and initial samples collected), the percentages of the project population estimated to be seropositive were 24% for BoHV-1, 69% for BVDV-1, 89% for BRSV and 91% for BPIV-3. For each of the four viruses, seropositivity at induction was associated with reduced risk of BRD (OR: 0.6–0.9), and seroincrease from induction to second blood sampling (35–60 days after induction) was associated with increased risk of BRD (OR: 1.3–1.5). Compared to animals that were seropositive for all four viruses at induction, animals were at progressively increased risk with increasing number of viruses for which they were seronegative; those seronegative for all four viruses were at greatest risk (OR: 2.4). Animals that seroincreased for one or more viruses from induction to second blood sampling were at increased risk (OR: 1.4–2.1) of BRD compared to animals that did not seroincrease for any viruses. Collectively these results confirm that prior exposure to these viruses is protective while exposure at or after feedlot entry increases the risk of development of BRD in feedlots. However, the modest increases in risk associated with seroincrease for each virus separately, and the progressive increases in risk with multiple viral exposures highlights the importance of concurrent infections in the aetiology of the BRD complex. These findings indicate that, while efficacious vaccines could aid in the control of BRD, vaccination against one of these viruses would not have large effects on population BRD incidence but vaccination against multiple viruses would be expected to result in greater reductions in incidence. The findings also confirm the multifactorial nature of BRD development, and indicate that multifaceted approaches in addition to efficacious vaccines against viruses will be required for substantial reductions in BRD incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses play a key role in the complex aetiology of bovine respiratory disease (BRD). Bovine viral diarrhoea virus 1 (BVDV-1) is widespread in Australia and has been shown to contribute to BRD occurrence. As part of a prospective longitudinal study on BRD, effects of exposure to BVDV-1 on risk of BRD in Australian feedlot cattle were investigated. A total of 35,160 animals were enrolled at induction (when animals were identified and characteristics recorded), held in feedlot pens with other cattle (cohorts) and monitored for occurrence of BRD over the first 50 days following induction. Biological samples collected from all animals were tested to determine which animals were persistently infected (PI) with BVDV-1. Data obtained from the Australian National Livestock Identification System database were used to determine which groups of animals that were together at the farm of origin and at 28 days prior to induction (and were enrolled in the study) contained a PI animal and hence to identify animals that had probably been exposed to a PI animal prior to induction. Multi-level Bayesian logistic regression models were fitted to estimate the effects of exposure to BVDV-1 on the risk of occurrence of BRD.Although only a total of 85 study animals (0.24%) were identified as being PI with BVDV-1, BVDV-1 was detected on quantitative polymerase chain reaction in 59% of cohorts. The PI animals were at moderately increased risk of BRD (OR 1.9; 95% credible interval 1.0-3.2). Exposure to BVDV-1 in the cohort was also associated with a moderately increased risk of BRD (OR 1.7; 95% credible interval 1.1-2.5) regardless of whether or not a PI animal was identified within the cohort. Additional analyses indicated that a single quantitative real-time PCR test is useful for distinguishing PI animals from transiently infected animals.The results of the study suggest that removal of PI animals and/or vaccination, both before feedlot entry, would reduce the impact of BVDV-1 on BRD risk in cattle in Australian feedlots. Economic assessment of these strategies under Australian conditions is required. © 2016 Elsevier B.V.