8 resultados para Violin makers
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Nutrient mass balances have been used to assess a variety of land resource scenarios, at various scales. They are widely used as a simple basis for policy, planning, and regulatory decisions but it is not clear how accurately they reflect reality. This study provides a critique of broad-scale nutrient mass balances, with particular application to the fertiliser use of beef lot-feeding manure in Queensland. Mass balances completed at the district and farm scale were found to misrepresent actual manure management behaviour and potentially the risk of nutrient contamination of water resources. The difficulties of handling stockpile manure and concerns about soil compaction mean that manure is spread thickly over a few paddocks at a time and not evenly across a whole farm. Consequently, higher nutrient loads were applied to a single paddock less frequently than annually. This resulted in years with excess nitrogen, phosphorus, and potassium remaining in the soil profile. This conclusion was supported by evidence of significant nutrient movement in several of the soil profiles studied. Spreading manure is profitable, but maximum returns can be associated with increased risk of nutrient leaching relative to conventional inorganic fertiliser practices. Bio-economic simulations found this increased risk where manure was applied to supply crop nitrogen requirements (the practice of the case study farms, 200-5000 head lot-feeders). Thus, the use of broad-scale mass balances can be misleading because paddock management is spatially heterogeneous and this leads to increased local potential for nutrient loss. In response to the effect of spatial heterogeneity policy makers who intend to use mass balance techniques to estimate potential for nutrient contamination should apply these techniques conservatively.
Resumo:
Quantifying the potential spread and density of an invading organism enables decision-makers to determine the most appropriate response to incursions. We present two linked models that estimate the spread of Solenopsis invicta Buren (red imported fire ant) in Australia based on limited data gathered after its discovery in Brisbane in 2001. A stochastic cellular automaton determines spread within a location (100 km by 100 km) and this is coupled with a model that simulates human-mediated movement of S. invicta to new locations. In the absence of any control measures, the models predict that S. invicta could cover 763 000–4 066 000 km2 by the year 2035 and be found at 200 separate locations around Australia by 2017–2027, depending on the rate of spread. These estimated rates of expansion (assuming no control efforts were in place) are higher than those experienced in the USA in the 1940s during the early invasion phases in that country. Active control efforts and quarantine controls in the USA (including a concerted eradication attempt in the 1960s) may have slowed spread. Further, milder winters, the presence of the polygynous social form, increased trade and human mobility in Australia in 2000s compared with the USA in 1940s could contribute to faster range expansion.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.
Resumo:
Land condition monitoring information is required for the strategic management of grazing land and for a better understanding of ecosystem processes. Yet, for policy makers and those land managers whose properties are situated within north-eastern Australia's vast Great Barrier Reef catchments, there has been a general lack of geospatial land condition monitoring information. This paper provides an overview of integrated land monitoring activity in rangeland areas of two major Reef catchments in Queensland: the Burdekin and Fitzroy regions. The project aims were to assemble land condition monitoring datasets that would assist grazing land management and support decision-makers investing public funds; and deliver these data to natural resource management(NRM) community groups, which had been given increased responsibility for delivering local environmental outcomes. We describe the rationale and processes used to produce new land condition monitoring datasets derived from remotely sensed Landsat thematic mapper (TM) and high resolution SPOT 5 satellite imagery and from rapid land condition ground assessment. Specific products include subcatchment groundcover change maps, regional mapping of indicative very poor land condition, and stratified land condition site summaries. Their application, integration, and limitations are discussed. The major innovation is a better understanding of NRM issues with respect to land condition across vast regional areas, and the effective transfer of decision-making capacity to the local level. Likewise, with an increased ability to address policy questions from an evidence-based position, combined with increased cooperation between community, industry and all levels of government, a new era has emerged for decision-makers in rangeland management.
Resumo:
The article discusses a new decision support process for forestry pest management. Over the past few years, DSS have been introduced for forestry pest management, providing forest growers with advice in areas such as selecting the most suitable pesticide and relevant treatment. Most of the initiatives process knowledge from various domains for providing support for specific decision making problems. However, very few studies have identified the requirements of developing a combined process model in which all relevant practitioners can contribute and share knowledge for effective decision making; such an approach would need to include the decision makers’ perspective along with other relevant attributes such as the problem context and relevant policies. We outline a decision support process for forestry pest management, based on the design science research paradigm, in which a focus group technique has application to acquire both expert and practical knowledge in order to construct the DSS solution.
Resumo:
The feasibility of state-wide eradication of 41 invasive plant taxa currently listed as ‘Class 1 declared pests’ under the Queensland Land Protection (Pest and Stock Route Management) Act 2002 was assessed using the predictive model ‘WeedSearch’. Results indicated that all but one species (Alternanthera philoxeroides) could be eradicated, provided sufficient funding and labour were available. Slightly less than one quarter (24.4%) (n = 10) of Class 1 weed taxa could be eradicated for less than $100 000 per taxon. An additional 43.9% (n = 18) could be eradicated for between $100 000 and $1M per taxon. Hence, 68.3% of Class 1 weed taxa (n = 28) could be eradicated for less than $1M per taxon. Eradication of 29.3% (n = 12) is predicted to cost more than $1M per taxon. Comparison of these WeedSearch outputs with either empirical analysis or results from a previous application of the model suggests that these costs may, in fact, be underestimates. Considering the likelihood that each weed will cost the state many millions of dollars in long-term losses (e.g. losses to primary production, environmental impacts and control costs), eradication seems a wise investment. Even where predicted costs are over $1M, eradication can still offer highly favourable benefit:cost ratios. The total (cumulative) cost of eradication of all 41 weed taxa is substantial; for all taxa, the estimated cost of eradication in the first year alone is $8 618 000. This study provides important information for policy makers, who must decide where to invest public funding.
Resumo:
1. Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. 2. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12 months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. 3. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23 years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248 years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. 4. Synthesis and applications. Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed.Aparticular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy.