9 resultados para Vesicle Formation
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 352C) had no effect on the cellular stages in root formation of the Slash * Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25C and slowest at 15C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (>80%) but reduced to 59% at 35C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Vegetative propagation programs internationally are affected by the significant decline of rooting success as trees mature. This study compared the cellular stages of root formation in stem cuttings from 15-week-old (juvenile) and 9-y-old (mature) stock plants of the slash x Caribbean pine hybrid (Pinus elliottii var. elliottii x P. caribaea van hondurensis). The cellular stages of root formation were the same in both juvenile and mature cuttings, beginning with cell divisions of the vascular cambium forming callus tissue. Within the callus, tracheids differentiated and elongated to form root primordia. Roots in juvenile cuttings developed faster than those in mature cuttings and the juvenile cuttings had a much higher rooting percent at the end of the study (92% and 26% respectively). Cuttings of the two juvenile genotypes had more primary roots (5.5 and 3.3) than the three mature genotypes (0.96, 0.18 and 0.07). The roots of juvenile cuttings were more evenly distributed around the basal circumference when compared with those on cuttings from the mature genotypes. Further work is needed to improve understanding of physiological changes with maturation so that the rooting success and the speed of development in cuttings from mature stock plants can be optimised, hence improving genetic gain.
Resumo:
Industry acceptance of alternative sulphite treatments for preventing blackspot in prawns is limited. This study demonstrated that dipping prawns (Penaeus monodon and Fenneropenaeus merguiensis) in a less concentrated solution for longer times provides better control of blackspot formation than the recommended 2 minute dip in 50 mg/L 4-hexylresorcinol. Protection improved as modified dipping times and solution concentrations increased. Blackspot protection provided by most of the modified dip methods was more effective than a 1 minute dip in 1% sodium metabisulphite. The recommended 2 minute dip method should be limited to 125 kg when used on consecutive 25-kg batches of prawns. Yields increased by less than 10% even after 72-hour exposure in the modified dip. The new dipping method meets most international residue standards when applying the modified treatments evaluated.
Resumo:
The marketing of organically labeled prawns is predominately in a cooked or raw frozen form to avoid the development of melanosis (black spot). Certification for organic status prohibits the use of any added chemicals. The application of 60% CO2/40%N2 modified atmosphere to chilled (raw) prawns using two species of prawn was investigated for the ability to control black spot formation. Sensory assessment and microbiological counts were used to determine the end of product shelf life. Modified atmosphere packaged (MAP) prawns exhibited no melanosis for up to 16 days. The high quality life was retained for 12 days; shelf life of 16 days, according to standard microbiological criteria, was achieved, which is more than twice previously reported for non-MAP prawns. Results suggest MAP may be an effective method for the marketing of organically grown prawns as well as those produced by conventional prawn aquaculture without application of the normal chemicals used to prevent black spot. Copyright © 2014 Crown Copyright.
Resumo:
Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.
Resumo:
Many plantation eucalypts are difficult to propagate from cuttings, and their rooted cuttings often possess very few adventitious roots. We microscopically examined the stem anatomy of cuttings from 12 species of eucalypts and we determined whether adventitious root formation in auxin-treated cuttings of four species was limited to particular positions around the vascular tissue. Most species contained a central pith that was arranged in a four-pointed stellate pattern. The surrounding vascular tissue was also arranged in a stellate pattern near the shoot apex but it developed a more rectangular shape at the outer phloem as the stems enlarged radially. Adventitious roots formed at, or slightly peripheral to, the vascular cambium, and they formed at both the corners and the sides of the rectangular-shaped vascular tissue. The study highlighted that auxin-treated eucalypt cuttings can produce roots at multiple positions around the vascular tissue and so propagation methods can aim to produce more than four adventitious roots per rooted cutting. Higher numbers of adventitious roots could improve the root system symmetry, stability, survival and growth rate of clonal eucalypt trees. © 2015 by the authors; licensee MDPI, Basel, Switzerland.