2 resultados para Vertical Disease Transmission
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Case report: A captive breeding colony of 9 greater bilbies (Macrotis lagotis) exhibited mild upper respiratory signs and sudden deaths with 100% mortality over a 2-week period. Histologically, acute necrotising and erosive epithelial lesions throughout the upper respiratory system and bronchi were associated with eosinophilic intranuclear inclusion bodies. Inclusions were also present in hepatocytes and adrenocortical cells, but were not always associated with necrosis. Transmission electron microscopy of lung sections revealed nucleocapsids forming arrays within some nuclei. A pan-herpesvirus PCR yielded a 440-bp product, with sequencing confirming homology with the alphaherpesviruses. Viral culture in a marsupial cell line resulted in cytopathic effect consistent with an alphaherpesvirus. Conclusion: This is the first report of a herpesvirus-associated disease in greater bilbies. © 2016 Australian Veterinary Association.
Resumo:
'Abnormal vertical growth' (AVG) was recognised in Australia as a dysfunction of macadamia (Macadamia spp.) in the mid-1990s. Affected trees displayed unusually erect branching, and poor flowering and yield. Since 2002, the commercial significance of AVG, its cause, and strategies to alleviate its affects, has been studied. The cause is still unknown, and AVG remains a serious threat to orchard viability. AVG affects both commercial and urban macadamia. It occurs predominantly in the warmer-drier production regions of Queensland and New South Wales. An estimated 100,000 orchard trees are affected, equating to an annual loss of $ 10.5 M. In orchards, AVG occurs as aggregations of affected trees, affected tree number can increase by 4.5% per year, and yield reduction can exceed 30%. The more upright cultivars 'HAES 344' and '741' are highly susceptible, while the more spreading cultivars 'A4', 'A16' and 'A268' show tolerance. Incidence is higher (p<0.05) in soils of high permeability and good drainage. No soil chemical anomaly has been found. Fine root dry weight of AVG trees (0-15 cm depth) was found lower (p<0.05) than non-AVG. Next generation sequencing has led to the discovery of a new Bacillus sp. and a bipartite Geminivirus, which may have a role in the disease. Trunk cinctures will increase (p<0.05) yield of moderately affected trees. Further research is needed to clarify whether a pathogen is the cause, the role of soil moisture in AVG, and develop a varietal solution.