22 resultados para Vegetation Index
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Resumo:
Australian researchers have been developing robust yield estimation models, based mainly on the crop growth response to water availability during the crop season. However, knowledge of spatial distribution of yields within and across the production regions can be improved by the use of remote sensing techniques. Images of Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, available since 1999, have the potential to contribute to crop yield estimation. The objective of this study was to analyse the relationship between winter crop yields and the spectral information available in MODIS vegetation index images at the shire level. The study was carried out in the Jondaryan and Pittsworth shires, Queensland , Australia . Five years (2000 to 2004) of 250m resolution, 16-day composite of MODIS Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images were used during the winter crop season (April to November). Seasonal variability of the profiles of the vegetation index images for each crop season using different regions of interest (cropping mask) were displayed and analysed. Correlation analysis between wheat and barley yield data and MODIS image values were also conducted. The results showed high seasonal variability in the NDVI and EVI profiles, and the EVI values were consistently lower than those of the NDVI. The highest image values were observed in 2003 (in contrast to 2004), and were associated with rainfall amount and distribution. The seasonal variability of the profiles was similar in both shires, with minimum values in June and maximum values at the end of August. NDVI and EVI images showed sensitivity to seasonal variability of the vegetation and exhibited good association (e.g. r = 0.84, r = 0.77) with winter crop yields.
Resumo:
Nitrogen (N) is the largest agricultural input in many Australian cropping systems and applying the right amount of N in the right place at the right physiological stage is a significant challenge for wheat growers. Optimizing N uptake could reduce input costs and minimize potential off-site movement. Since N uptake is dependent on soil and plant water status, ideally, N should be applied only to areas within paddocks with sufficient plant available water. To quantify N and water stress, spectral and thermal crop stress detection methods were explored using hyperspectral, multispectral and thermal remote sensing data collected at a research field site in Victoria, Australia. Wheat was grown over two seasons with two levels of water inputs (rainfall/irrigation) and either four levels (in 2004; 0, 17, 39 and 163 kg/ha) or two levels (in 2005; 0 and 39 kg/ha N) of nitrogen. The Canopy Chlorophyll Content Index (CCCI) and modified Spectral Ratio planar index (mSRpi), two indices designed to measure canopy-level N, were calculated from canopy-level hyperspectral data in 2005. They accounted for 76% and 74% of the variability of crop N status, respectively, just prior to stem elongation (Zadoks 24). The Normalised Difference Red Edge (NDRE) index and CCCI, calculated from airborne multispectral imagery, accounted for 41% and 37% of variability in crop N status, respectively. Greater scatter in the airborne data was attributable to the difference in scale of the ground and aerial measurements (i.e., small area plant samples against whole-plot means from imagery). Nevertheless, the analysis demonstrated that canopy-level theory can be transferred to airborne data, which could ultimately be of more use to growers. Thermal imagery showed that mean plot temperatures of rainfed treatments were 2.7 °C warmer than irrigated treatments (P < 0.001) at full cover. For partially vegetated fields, the two-Dimensional Crop Water Stress Index (2D CWSI) was calculated using the Vegetation Index-Temperature (VIT) trapezoid method to reduce the contribution of soil background to image temperature. Results showed rainfed plots were consistently more stressed than irrigated plots. Future work is needed to improve the ability of the CCCI and VIT methods to detect N and water stress and apply both indices simultaneously at the paddock scale to test whether N can be targeted based on water status. Use of these technologies has significant potential for maximising the spatial and temporal efficiency of N applications for wheat growers. ‘Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
This paper compares classified normalized difference vegetation index images of cotton crops derived from both low and high resolution satellite imagery to determine the most accurate and feasible option for Australian cotton growers. It also demonstrates a rapid automated processing and internet delivery system for distributing satellite SPOT-2 imagery. Also provided is the profile of two case studies conducted in the Darling Towns demonstrating the potential benefit of adopting this technology for improving in-season agronomic crop assessments and therefore enable improved management decisions to be made.
Resumo:
Long-running datasets from aerial surveys of kangaroos (Macropus giganteus, Macropus [uliginosus, Macropus robustus and Macropus rufus) across Queensland, New South Wales and South Australia have been analysed, seeking better predictors of rates of increase which would allow aerial surveys to be undertaken less frequently than annually. Early models of changes in kangaroo numbers in response to rainfall had shown great promise, but much variability. We used normalised difference vegetation index (NDVI) instead, reasoning that changes in pasture condition would provide a better predictor than rainfall. However, except at a fine scale, NDVI proved no better; although two linked periods of rainfall proved useful predictors of rates of increase, this was only in some areas for some species. The good correlations reported in earlier studies were a consequence of data dominated by large droughtinduced adult mortality, whereas over a longer time frame and where changes between years are less dramatic, juvenile survival has the strongest influence on dynamics. Further, harvesting, density dependence and competition with domestic stock are additional and important influences and it is now clear that kangaroo movement has a greater influence on population dynamics than had been assumed. Accordingly, previous conclusions about kangaroo populations as simple systems driven by rainfall need to be reassessed. Examination of this large dataset has permitted descriptions of shifts in distribution of three species across eastern Australia, changes in dispersion in response to rainfall, and an evaluation of using harvest statistics as an index of density and harvest rate. These results have been combined into a risk assessment and decision theory framework to identify optimal monitoring strategies.
Resumo:
The wheat grain industry is Australia's second largest agricultural export commodity. There is an increasing demand for accurate, objective and near real-time crop production information by industry. The advent of the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite platform has augmented the capability of satellite-based applications to capture reflectance over large areas at acceptable pixel scale, cost and accuracy. The use of multi-temporal MODIS-enhanced vegetation index (EVI) imagery to determine crop area was investigated in this article. Here the rigour of the harmonic analysis of time-series (HANTS) and early-season metric approaches was assessed when extrapolating over the entire Queensland (QLD) cropping region for the 2005 and 2006 seasons. Early-season crop area estimates, at least 4 months before harvest, produced high accuracy at pixel and regional scales with percent errors of -8.6% and -26% for the 2005 and 2006 seasons, respectively. In discriminating among crops at pixel and regional scale, the HANTS approach showed high accuracy. The errors for specific area estimates for wheat, barley and chickpea were 9.9%, -5.2% and 10.9% (for 2005) and -2.8%, -78% and 64% (for 2006), respectively. Area estimates of total winter crop, wheat, barley and chickpea resulted in coefficient of determination (R(2)) values of 0.92, 0.89, 0.82 and 0.52, when contrasted against the actual shire-scale data. A significantly high coefficient of determination (0.87) was achieved for total winter crop area estimates in August across all shires for the 2006 season. Furthermore, the HANTS approach showed high accuracy in discriminating cropping area from non-cropping area and highlighted the need for accurate and up-to-date land use maps. The extrapolability of these approaches to determine total and specific winter crop area estimates, well before flowering, showed good utility across larger areas and seasons. Hence, it is envisaged that this technology might be transferable to different regions across Australia.
Resumo:
Turfgrasses range from extremely salt sensitive to highly salt tolerant. However, the selection of a salt tolerant turf is not a 'silver bullet' solution to successful turf growth on salt-affected parklands. Interactions between factors such as cultivar, construction practices, establishment, and maintenance can be complex and should not be considered in isolation of one another. Taking this holistic approach, a study investigating cultivar evaluation for salt-affected sites also included a comparison of topsoil materials as turf underlay, as well as pre-treatment of the sod. The turf species and cultivars used in the study were: Cynodon dactylon, cultivar 'Oz Tuff (I) '; Paspalum vaginatum, cultivars 'Sea Isle 1 (I) ' and 'Velvetene (I) '; Zoysia matrella cultivar 'A-1 (I) '; and Zoysia japonica, cultivar 'Empire (I) '. The two underlay materials were compost (100%) or a sandy clay topsoil each applied above a coastal sand profile to a depth of 10 cm. Rooting depth or root dry weight did not significantly differ among turf cultivars. Compost profile treatment had significantly greater root mass than the topsoil among all turf cultivars. This higher root production was reflected by improved quality of all turf at the final evaluation. Turfgrass grown on compost had a higher normalised difference vegetation index (NDVI), regardless of whether full sod or bare-rooted turfgrass was used. The use of a quality underlay was paramount to the successful growth of the turf cultivars investigated. While each cultivar had superior performance in sub-optimal conditions, the key to success was the selection of the right species and cultivar for each situation combined with proper establishment and maintenance of each turf grass.
Resumo:
Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation 'thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus δ13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the δ13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C3) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography.
Resumo:
Seven discrete stages and substages of moulting in the ornate rock lobster, Panulirus ornatus, have been distinguished by microscopic examination of the cuticle and setae of the pleopods . The diagnostic features and the duration of each of the stages are described. Freezing did not visually alter the tissue features used to identify each moult stage. Pleopod morphology can reliably indicate whether a lobster has moulted within the previous 24 h or is within 72 h of the next ecdysis.
Resumo:
Site index prediction models are an important aid for forest management and planning activities. This paper introduces a multiple regression model for spatially mapping and comparing site indices for two Pinus species (Pinus elliottii Engelm. and Queensland hybrid, a P. elliottii x Pinus caribaea Morelet hybrid) based on independent variables derived from two major sources: g-ray spectrometry (potassium (K), thorium (Th), and uranium (U)) and a digital elevation model (elevation, slope, curvature, hillshade, flow accumulation, and distance to streams). In addition, interpolated rainfall was tested. Species were coded as a dichotomous dummy variable; interaction effects between species and the g-ray spectrometric and geomorphologic variables were considered. The model explained up to 60% of the variance of site index and the standard error of estimate was 1.9 m. Uranium, elevation, distance to streams, thorium, and flow accumulation significantly correlate to the spatial variation of the site index of both species, and hillshade, curvature, elevation and slope accounted for the extra variability of one species over the other. The predicted site indices varied between 20.0 and 27.3 m for P. elliottii, and between 23.1 and 33.1 m for Queensland hybrid; the advantage of Queensland hybrid over P. elliottii ranged from 1.8 to 6.8 m, with the mean at 4.0 m. This compartment-based prediction and comparison study provides not only an overview of forest productivity of the whole plantation area studied but also a management tool at compartment scale.
A method for mapping the distribution and density of rabbits and other vertebrate pests in Australia
Resumo:
The European wild rabbit has been considered Australia’s worst vertebrate pest and yet little effort appears to have gone into producing maps of rabbit distribution and density. Mapping the distribution and density of pests is an important step in effective management. A map is essential for estimating the extent of damage caused and for efficiently planning and monitoring the success of pest control operations. This paper describes the use of soil type and point data to prepare a map showing the distribution and density of rabbits in Australia. The potential for the method to be used for mapping other vertebrate pests is explored. The approach used to prepare the map is based on that used for rabbits in Queensland (Berman et al. 1998). An index of rabbit density was determined using the number of Spanish rabbit fleas released per square kilometre for each Soil Map Unit (Atlas of Australian Soils). Spanish rabbit fleas were released into active rabbit warrens at 1606 sites in the early 1990s as an additional vector for myxoma virus and the locations of the releases were recorded using a Global Positioning System (GPS). Releases were predominantly in arid areas but some fleas were released in south east Queensland and the New England Tablelands of New South Wales. The map produced appears to reflect well the distribution and density of rabbits, at least in the areas where Spanish fleas were released. Rabbit pellet counts conducted in 2007 at 54 sites across an area of south east South Australia, south eastern Queensland, and parts of New South Wales (New England Tablelands and south west) in soil Map Units where Spanish fleas were released, provided a preliminary means to ground truth the map. There was a good relationship between mean pellet count score and the index of abundance for soil Map Units. Rabbit pellet counts may allow extension of the map into other parts of Australia where there were no Spanish rabbit fleas released and where there may be no other consistent information on rabbit location and density. The recent Equine Influenza outbreak provided a further test of the value of this mapping method. The distribution and density of domestic horses were mapped to provide estimates of the number of horses in various regions. These estimates were close to the actual numbers of horses subsequently determined from vaccination records and registrations. The soil Map Units are not simply soil types they contain information on landuse and vegetation and the soil classification is relatively localised. These properties make this mapping method useful, not only for rabbits, but also for other species that are not so dependent on soil type for survival.
Resumo:
The emerging carbon economy will have a major impact on grazing businesses because of significant livestock methane and land-use change emissions. Livestock methane emissions alone account for similar to 11% of Australia's reported greenhouse gas emissions. Grazing businesses need to develop an understanding of their greenhouse gas impact and be able to assess the impact of alternative management options. This paper attempts to generate a greenhouse gas budget for two scenarios using a spread sheet model. The first scenario was based on one land-type '20-year-old brigalow regrowth' in the brigalow bioregion of southern-central Queensland. The 50 year analysis demonstrated the substantially different greenhouse gas outcomes and livestock carrying capacity for three alternative regrowth management options: retain regrowth (sequester 71.5 t carbon dioxide equivalents per hectare, CO2-e/ha), clear all regrowth (emit 42.8 t CO2-e/ha) and clear regrowth strips (emit 5.8 t CO2-e/ha). The second scenario was based on a 'remnant eucalypt savanna-woodland' land type in the Einasleigh Uplands bioregion of north Queensland. The four alternative vegetation management options were: retain current woodland structure (emit 7.4 t CO2-e/ha), allow woodland to thicken increasing tree basal area (sequester 20.7 t CO2-e/ha), thin trees less than 10 cm diameter (emit 8.9 t CO2-e/ha), and thin trees <20 cm diameter (emit 12.4 t CO2-e/ha). Significant assumptions were required to complete the budgets due to gaps in current knowledge on the response of woody vegetation, soil carbon and non-CO2 soil emissions to management options and land-type at the property scale. The analyses indicate that there is scope for grazing businesses to choose alternative management options to influence their greenhouse gas budget. However, a key assumption is that accumulation of carbon or avoidance of emissions somewhere on a grazing business (e.g. in woody vegetation or soil) will be recognised as an offset for emissions elsewhere in the business (e.g. livestock methane). This issue will be a challenge for livestock industries and policy makers to work through in the coming years.
Resumo:
Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.
Resumo:
A project to allow the resource assessment of tidal wetland vegetation of western Cape York Peninsula, in north Queensland, was undertaken as part of the longterm assessment of the coastal fisheries resources of Queensland. The project incorporated a littoral invertebrate fauna component. Extending from May 1993 to December 1994, fieldwork was undertaken in May 1993, November 1993 and April 1994. The aims of this project were to: • obtain baseline information on the distribution of marine plants of western Cape York Peninsula; • commence a preliminary assessment of the littoral invertebrate fauna and their habitat requirements with a view to extending knowledge of their biogeographic affinities; • perform biogeographic classification of the tidal wetlands at a meso and local scale for marine conservation planning; • evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important/threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]
Resumo:
The Cape York Peninsula Land Use Strategy (CYPLUS) is a joint Queensland/Commonwealth initiative to provide a framework for making decisions about how to use and manage the natural resources of Cape York Peninsula in ways that will be ecologically sustainable. As part of the Natural Resources Analysis Program (NRAP) of CYPLUS, the Fisheries Division of the Queensland Department of Primary Industries has mapped the marine vegetation (mangroves and seagrasses) for Cape York Peninsula. The project ran from July 1992 to June 1994. Field work was undertaken in November 1992, May 1993, and April 1994. Final report on project: NRO6 – Marine Plan (Seagrass/Mangrove) Distribution. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]