2 resultados para Variation of Resource Consumption
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In Australia, macadamia trees are commonly propagated by germinating rootstock seed and grafting when seedlings reach a suitable size. The production of grafted trees is a protracted and complex process, however, propagation of macadamia via cuttings represents a simpler and faster method of multiplication. Macadamias have traditionally proven difficult to propagate from cuttings, and while recent developments in the process have improved success rates, substantial variation in rooting ability between cultivars and species has been reported. The cultivar 'Beaumont' (Macadamia integrifolia × M. tetraphylla) is commonly propagated by cutting for use as a rootstock, and is relatively easy to strike while other cultivars are more difficult. There is speculation that Hawaiian cultivars are more difficult to strike from cuttings than Australian cultivars due to species and genetic composition. In this experiment, cuttings of 32 genotypes were evaluated for rooting ability. Each genotype's species profile was estimated using historical data, and used to determine species effects on survival (percentage) and rooting ability (rating 0-2). M. jansenii (100%), M. tetraphylla (84%) and M. integrifolia/tetraphylla hybrids (79%) had the highest success rates while M. integrifolia (54%) and M. ternifolia (43%) had the lowest survival. Rooting ability of M. jansenii (1.75) was significantly higher than M. ternifolia (0.49) but not significantly higher than M. tetraphylla × M. integrifolia with (1.09), M. tetraphylla (1.03) or M. integrifolia (0.88).
Resumo:
Livestock industries have maintained a keen interest in pasture legumes because of the high protein content and nutritive value. Leguminous Indigofera plant species have been considered as having high feeding values to be utilized as pasture, but the occurrence of the toxic constituent indospicine in some species has restricted this utility. Indospicine has caused both primary and secondary hepatotoxicosis and also reproductive losses, but has only previously been determined in a small number of Indigofera species. This paper validates a high throughput ultra-performance liquid chromatography−tandem mass spectrometry (UPLC−MS/MS) method to determine indospicine content of various Indigofera species found in Australian pasture. Twelve species of Indigofera together with Indigastrum parviflorum plants were collected and analysed. Out of the 84 samples analyzed, *I. spicata contained the highest indospicine level (1003 ± 328 mg/kg DM, n = 4) followed by I. linnaei (755 ± 490 mg/kg DM, n = 51). Indospicine was not detected in 9 of the remaining 11 species, and at only low levels (<10 mg/kg DM) in 2 out of 8 I. colutea specimens and in 1 out of 5 I. linifolia specimens. Indospicine concentrations were below quantitation levels for other Indigofera spp. (I. adesmiifolia, I. georgei, I. hirsuta, I. leucotricha,* I. oblongifolia, I. australis and I. trita) and Indigastrum parviflorum. One of the more significant findings to emerge from this study is that the indospicine content of I. linnaei is highly variable (159 to 2128 mg/kg DM, n = 51), and differs across both regions and seasons. Its first re-growth after spring rain has a higher (p < 0.01) indospicine content than growth following more substantial summer rain. The species collected include the predominant Indigofera in Australia pasture, and of these, only *I. spicata and I. linnaei contain high enough levels of indospicine to pose a potential toxic threat to grazing herbivores.