3 resultados para Variables aleatorias
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Brix content of pineapple fruit can be non-invasively predicted from the second derivative of near infrared reflectance spectra. Correlations obtained using a NIRSystems 6500 spectrophotometer through multiple linear regression and modified partial least squares analyses using a post-dispersive configuration were comparable with that from a pre-dispersive configuration in terms of accuracy (e.g. coefficient of determination, R2, 0.73; standard error of cross validation, SECV, 1.01°Brix). The effective depth of sample assessed was slightly greater using the post-dispersive technique (about 20 mm for pineapple fruit), as expected in relation to the higher incident light intensity, relative to the pre-dispersive configuration. The effect of such environmental variables as temperature, humidity and external light, and instrumental variables such as the number of scans averaged to form a spectrum, were considered with respect to the accuracy and precision of the measurement of absorbance at 876 nm, as a key term in the calibration for Brix, and predicted Brix. The application of post-dispersive near infrared technology to in-line assessment of intact fruit in a packing shed environment is discussed.
Resumo:
Buffel grass [Pennisetum ciliare (L.) Link] has been widely introduced in the Australian rangelands as a consequence of its value for productive grazing, but tends to competitively establish in non-target areas such as remnant vegetation. In this study, we examined the influence landscape-scale and local-scale variables had upon the distribution of buffel grass in remnant poplar box (Eucalyptus populnea F. Muell.) dominant woodland fragments in the Brigalow Bioregion, Queensland. Buffel grass and variables thought to influence its distribution in the region were measured at 60 sites, which were selected based on the amount of native woodland retained in the landscape and patch size. An information-theoretic modelling approach and hierarchical partitioning revealed that the most influential variable was the percent of retained vegetation within a 1-km spatial extent. From this, we identified a critical threshold of similar to 30% retained vegetation in the landscape, above which the model predicted buffel grass was not likely to occur in a woodland fragment. Other explanatory variables in the model were site based, and included litter cover and long-term rainfall. Given the paucity of information on the effect of buffel grass upon biodiversity values, we undertook exploratory analyses to determine whether buffel grass cover influenced the distribution of grass, forb and reptile species. We detected some trends; hierarchical partitioning revealed that buffel grass cover was the most important explanatory variable describing habitat preferences of four reptile species. However, establishing causal links - particularly between native grass and forb species and buffel grass - was problematic owing to possible confounding with grazing pressure. We conclude with a set of management recommendations aimed at reducing the spread of buffel grass into remnant woodlands.
Resumo:
Bactrocera frauenfeldi (Schiner), the ‘mango fruit fly’, is a horticultural pest originating from the Papua New Guinea region. It was first detected in Australia on Cape York Peninsula in north Queensland in 1974 and had spread to Cairns by 1994 and Townsville by 1997. Bactrocera frauenfeldi has not been recorded further south since then despite its invasive potential, an absence of any controls and an abundance of hosts in southern areas. Analysis of cue-lure trapping data from 1997 to 2012 in relation to environmental variables shows that the distribution of B. frauenfeldi in Queensland correlates to locations with a minimum temperature for the coldest month >13.2°C, annual temperature range <19.3°C, mean temperature of the driest quarter >20.2°C, precipitation of the wettest month >268 mm, precipitation of the wettest quarter >697 mm, temperature seasonality <30.9°C (i.e. lower temperature variability) and areas with higher human population per square kilometre. Annual temperature range was the most important variable in predicting this species' distribution. Predictive distribution maps based on an uncorrelated subset of these variables reasonably reflected the current distribution of this species in northern Australia and predicted other areas in the world potentially at risk from invasion by this species. This analysis shows that the distribution of B. frauenfeldi in Australia is correlated to certain environmental variables that have most likely limited this species' spread southward in Queensland. This is of importance to Australian horticulture in demonstrating that B. frauenfeldi is unlikely to establish in horticultural production areas further south than Townsville.