4 resultados para Value System
em eResearch Archive - Queensland Department of Agriculture
Resumo:
A decision support system has been developed in Queensland to evaluate how changes in silvicultural regimes affect wood quality, and specifically the graded recovery of structural timber. Models of tree growth, branch architecture and wood properties were developed from data collected in routine Caribbean pine plantations and specific silvicultural experiments. These models were incorporated in software that simulates the conversion of standing trees into logs, and the logs into boards, and generates detailed data on knot location and basic density distribution. The structural grade of each board was determined by simulating the machine stress-grading process, and the predicted graded recovery provided an indicator of wood value. The decision support system improves the basis of decision-making by simulating the performance of elite genetic material under specified silvicultural regimes and by predicting links between wood quality and general stand attributes such as stocking and length of rotation.
Resumo:
In parts of Australia, sorghum grain is a cheaper alternative to other cereal grains but its use and nutritive value in sheep feeding systems is not well understood. The aim of this work was to compare growth and carcass characteristics for crossbred lambs consuming several simple, sorghum-based diets. The treatments were: (1) whole sorghum grain, (2) whole sorghum grain + urea and ammonium sulfate, (3) cracked sorghum grain + urea and ammonium sulfate, (4) expanded sorghum grain + urea and ammonium sulfate, (5) whole sorghum grain + cottonseed meal, and (6) whole sorghum grain + whole cottonseed. Nine lambs were slaughtered initially to provide baseline carcass data and the remaining 339 lambs were gradually introduced to the concentrate diets over 14 days before being fed concentrates and wheaten hay ad libitum for 41, 56 or 76 days. Neither cracking nor expanding whole sorghum grain with added non-protein nitrogen (N) resulted in significantly (P > 0.05) increased final liveweight, growth rates or carcass weights for lambs, or in decreased days on feed to reach 18-kg carcass weight, although carcass fat depth was significantly (P < 0.05) increased compared with the whole sorghum plus non-protein N diet. However, expanding sorghum grain significantly (P < 0.05) reduced faecal starch concentrations compared with whole or cracked sorghum diets with added non-protein N (79 v. 189 g/kg DM after 59 days on feed). Lambs fed whole sorghum grain without an additional N source had significantly (P < 0.05) lower concentrate intake and required significantly (P < 0.05) more days on feed to reach a carcass weight of 18 kg than for all diets containing added N. These lambs also had significantly (P < 0.05) lower carcass weight and fat depth than for lambs consuming whole sorghum plus true protein diets. Substituting sources of true protein (cottonseed meal and whole cottonseed) for non-protein N (urea and ammonium sulfate) did not significantly (P > 0.05) affect concentrate intakes or carcass weights of lambs although carcass fat depth was significantly (P < 0.05) increased and the days to reach 18-kg carcass weight were significantly (P < 0.05) decreased for the whole sorghum plus cottonseed meal diet. In conclusion, processing sorghum grain by cracking or expanding did not significantly improve lamb performance. While providing an additional N source with sorghum grain significantly increased lamb performance, there was no benefit in final carcass weight of lambs from substituting sources of true protein for non-protein N.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips(for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in mperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design. This calculator forms part of the free interactive website www.timbers.com.au.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.