2 resultados para Vakar formula
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Grass (monocots) and non-grass (dicots) proportions in ruminant diets are important nutritionally because the non-grasses are usually higher in nutritive value, particularly protein, than the grasses, especially in tropical pastures. For ruminants grazing tropical pastures where the grasses are C-4 species and most non-grasses are C-3 species, the ratio of C-13/C-12 in diet and faeces, measured as delta C-13 parts per thousand, is proportional to dietary non-grass%. This paper describes the development of a faecal near infrared (NIR) spectroscopy calibration equation for predicting faecal delta C-13 from which dietary grass and non-grass proportions can be calculated. Calibration development used cattle faeces derived from diets containing only C-3 non-grass and C-4 grass components, and a series of expansion and validation steps was employed to develop robustness and predictive reliability. The final calibration equation contained 1637 samples and faecal delta C-13 range (parts per thousand) of [12.27]-[27.65]. Calibration statistics were: standard error of calibration (SEC) of 0.78, standard error of cross-validation (SECV) of 0.80, standard deviation (SD) of reference values of 3.11 and R-2 of 0.94. Validation statistics for the final calibration equation applied to 60 samples were: standard error of prediction (SEP) of 0.87, bias of -0.15, R-2 of 0.92 and RPD of 3.16. The calibration equation was also tested on faeces from diets containing C-4 non-grass species or temperate C-3 grass species. Faecal delta C-13 predictions indicated that the spectral basis of the calibration was not related to C-13/C-12 ratios per se but to consistent differences between grasses and non-grasses in chemical composition and that the differences were modified by photosynthetic pathway. Thus, although the calibration equation could not be used to make valid faecal delta C-13 predictions when the diet contained either C-3 grass or C-4 non-grass, it could be used to make useful estimates of dietary non-grass proportions. It could also be ut :sed to make useful estimates of non-grass in mixed C-3 grass/non-grass diets by applying a modified formula to calculate non-grass from predicted faecal delta C-13. The development of a robust faecal-NIR calibration equation for estimating non-grass proportions in the diets of grazing cattle demonstrated a novel and useful application of NIR spectroscopy in agriculture.