5 resultados para Utility optimization

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the application of digital ecosystems concepts to a biological ecosystem simulation problem. The problem involves the use of a digital ecosystem agent to optimize the accuracy of a second digital ecosystem agent, the biological ecosystem simulation. The study also incorporates social ecosystems, with a technological solution design subsystem communicating with a science subsystem and simulation software developer subsystem to determine key characteristics of the biological ecosystem simulation. The findings show similarities between the issues involved in digital ecosystem collaboration and those occurring when digital ecosystems interact with biological ecosystems. The results also suggest that even precise semantic descriptions and comprehensive ontologies may be insufficient to describe agents in enough detail for use within digital ecosystems, and a number of solutions to this problem are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australian utility pole network is aging and reaching its end of life, with 70% of the 5 million poles currently in-service nationally installed within the 20 years following the end of World War II. The estimated investment required for the replacement or remedial maintenance of the aging 3.5 millions poles is as high as 1.75 billion dollars. Additionally, an estimated 21,700 high-durability new poles are required each year, representing further investment of 13.5 million dollars per year. Yet, agreements which progressively phase out logging of native forests around Australia have been signed, giving the industry about 25 years to make the transition from Crown native forests to plantations and private forests. As utility poles were traditionally cut from native forest hardwood species, finding solutions to source new poles currently presents a challenge. This paper presents tests on Veneer Based Composite hardwood hollow utility poles manufactured from Gympie messmate (Eucalyptus cloeziana) plantation thinning. Small diameter poles of nominal 115 mm internal diameter and 15 mm wall-thickness were manufactured in two half-poles butt jointed together, using 9 veneers per halfpole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles cut from mature trees and of similar size. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective technical solution to the current shortage of utility poles. © RILEM 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia’s utility pole network is aging and approaching its end of life. It is estimated that 70% of the 5 million poles currently in-service nationally were installed within the 20 years following the end of World War II and require replacement or remedial maintenance. Additionally, an estimated 21,700 high-durability new poles are required each year to support the expansion of the energy network. Utility poles were traditionally cut from native forest hardwood species. However, due to agreements which progressively phase out logging of native forests around Australia, finding new sources for utility poles presents a challenge. This paper presents the development of veneer based composite hardwood hollow utility poles manufactured from mid-rotation Gympie messmate (Eucalyptus cloeziana) plantation thinned trees (also referred to as “thinning”), as an alternative to solid hardwood poles. The incentives behind the project and benefits of the proposed products are introduced in the paper. Small diameter poles, of nominal 115 mm internal diameter and 15 mm wall-thickness, were manufactured in two half-poles butt jointed together, using 9 hardwood veneers per half-pole. The poles were tested in bending and shear, and experimental test results are presented. The mechanical performance of the hollow poles is discussed and compared to hardwood poles sourced from mature trees and of similar size. Additionally, the required dimensions of the proposed hollow pole to replace actual solid poles are estimated. Results show that the proposed product represents a viable technical solution to the current shortage of utility poles. Future research and different options for improving the current concept are proposed in order to provide a more reliable and cost effective product for structural and architectural applications in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable age information is vital for effective fisheries management, yet age determinations are absent for many deepwater sharks as they cannot be aged using traditional methods of growth bands counts. An alternative approach to ageing using near infrared spectroscopy (NIRS) was investigated using dorsal fin spines, vertebrae and fin clips of three species of deepwater sharks. Ages were successfully estimated for the two dogfish, Squalus megalops and Squalus montalbani, and NIRS spectra were correlated with body size in the catshark, Asymbolus pallidus. Correlations between estimated-ages of the dogfish dorsal fin spines and their NIRS spectra were good, with S. megalops R2=0.82 and S. montalbani R2=0.73. NIRS spectra from S. megalops vertebrae and fin clips that have no visible growth bands were correlated with estimated-ages, with R2=0.89 and 0.76, respectively. NIRS has the capacity to non-lethally estimate ages from fin spines and fin clips, and thus could significantly reduce the numbers of sharks that need to be lethally sampled for ageing studies. The detection of ageing materials by NIRS in poorly calcified deepwater shark vertebrae could potentially enable ageing of this group of sharks that are vulnerable to exploitation.