3 resultados para ULTRAVIOLET PHOTODETECTOR

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equid herpesvirus 1 (EHV1) is a major disease of equids worldwide causing considerable losses to the horse industry. A variety of techniques, including PCR have been used to diagnose EHV1. Some of these PCRs were used in combination with other techniques such as restriction enzyme analysis (REA) or hybridisation, making them cumbersome for routine diagnostic testing and increasing the chances of cross-contamination. Furthermore, they involve the use of suspected carcinogens such as ethidium bromide and ultraviolet light. In this paper, we describe a real-time PCR, which uses minor groove-binding probe (MGB) technology for the diagnosis of EHV1. This technique does not require post-PCR manipulations thereby reducing the risk of cross-contamination. Most importantly, the technique is specific; it was able to differentiate EHV1 from the closely related member of the Alphaherpesvirinae, equid herpesvirus 4 (EHV4). It was not reactive with common opportunistic pathogens such as Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa and Enterobacter agglomerans often involved in abortion. Similarly, it did not react with equine pathogens such as Streptococcus equi, Streptococcus equisimilis, Streptococcus zooepidemicus, Taylorella equigenitalis and Rhodococcus equi, which also cause abortion. The results obtained with this technique agreed with results from published PCR methods. The assay was sensitive enough to detect EHV1 sequences in paraffin-embedded tissues and clinical samples. When compared to virus isolation, the test was more sensitive. This test will be useful for the routine diagnosis of EHV1 based on its specificity, sensitivity, ease of performance and rapidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arthropods are known to use silk for a number of different purposes including web construction, shelter building, leaf tying, construction of pupal cocoons, and as a safety line when dislodged from a substrate (Alexander, 1961; Fitzgerald, 1983; Common, 1990). Across the arthropods, silk displays a diversity of material properties and chemical constituents and is produced from glands with different evolutionary origins (Craig, 1997). Among insects, larval Lepidoptera are prolific producers of silk. Because many lepidopteran larvae are pests, an ability to interfere with silk production or, at the very least, an understanding of how silk is used, could provide new options for pest control. After testing many known fluorescent dyes, we found that Fluorescent Brightener 28 (also known as Calcofluor White M2R) (Sigma-Aldrich Pty Ltd, Sydney, NSW, Australia), an optical brightener used in the textile industry, binds to arthropod silk in a simple staining reaction, causing it to fluoresce under ultraviolet (UV) light. Such brighteners have also been used in insect gut content analysis (Schlein & Muller, 1995; Hugo et al., 2003). Here we describe the method of visualizing arthropod silk on plant surfaces, using as a model the thin, barely visible, single strands of silk produced by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonates.