5 resultados para Trauma and Loss
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The hypothesis that contaminant plants growing amongst chickpea serve as Helicoverpa sinks by diverting oviposition pressure away from the main crop was tested under field conditions. Gain (recruitment) and loss (presumed mortality) of juvenile stages of Helicoverpa spp. on contaminant faba bean and wheat plants growing in chickpea plots were quantified on a daily basis over a 12-d period. The possibility of posteclosion movement of larvae from the contaminants to the surrounding chickpea crop was examined. Estimated total loss of the census population varied from 80 to 84% across plots and rows. The loss of brown eggs (40–47%) contributed most to the overall loss estimate, followed by loss of white eggs (27–35%) and larvae (6–9%). The cumulative number of individuals entering the white and brown egg and larval stages over the census period ranged from 15 to 58, 10–48 and 1–6 per m row, respectively. The corresponding estimates of mean stage-specific loss, expressed as a percentage of individuals entering the stage, ranged from 52 to 57% for white eggs, 87–108% for brown eggs and 71–87% for first-instar larvae. Mean larval density on chickpea plants in close proximity to the contaminant plants did not exceed the baseline larval density on chickpea further away from the contaminants across rows and plots. The results support the hypothesis that contaminant plants in chickpea plots serve as Helicoverpa sinks by diverting egg pressure from the main crop and elevating mortality of juvenile stages. Deliberate contamination of chickpea crops with other plant species merits further investigation as a cultural pest management strategy for Helicoverpa spp.
Resumo:
The reliability of ants as bioindicators of ecosystem condition is dependent on the consistency of their response to localised habitat characteristics, which may be modified by larger-scale effects of habitat fragmentation and loss. We assessed the relative contribution of habitat fragmentation, habitat loss and within-patch habitat characteristics in determining ant assemblages in semi-arid woodland in Queensland, Australia. Species and functional group abundance were recorded using pitfall traps across 20 woodland patches in landscapes that exhibited a range of fragmentation states. Of fragmentation measures, changes in patch area and patch edge contrast exerted the greatest influence on species assemblages, after accounting for differences in habitat loss. However, 35% of fragmentation effects on species were confounded by the effects of habitat characteristics and habitat loss. Within-patch habitat characteristics explained more than twice the amount of species variation attributable to fragmentation and four times the variation explained by habitat loss. The study indicates that within-patch habitat characteristics are the predominant drivers of ant composition. We suggest that caution should be exercised in interpreting the independent effects of habitat fragmentation and loss on ant assemblages without jointly considering localised habitat attributes and associated joint effects.
Resumo:
Reforestation will have important consequences for the global challenges of mitigating climate change, arresting habitat decline and ensuring food security. We examined field-scale trade-offs between carbon sequestration of tree plantings and biodiversity potential and loss of agricultural land. Extensive surveys of reforestation across temperate and tropical Australia (N = 1491 plantings) were used to determine how planting width and species mix affect carbon sequestration during early development (< 15 year). Carbon accumulation per area increased significantly with decreasing planting width and with increasing proportion of eucalypts (the predominant over-storey genus). Highest biodiversity potential was achieved through block plantings (width > 40 m) with about 25% of planted individuals being eucalypts. Carbon and biodiversity goals were balanced in mixed-species plantings by establishing narrow belts (width < 20 m) with a high proportion (>75%) of eucalypts, and in monocultures of mallee eucalypt plantings by using the widest belts (ca. 6–20 m). Impacts on agriculture were minimized by planting narrow belts (ca. 4 m) of mallee eucalypt monocultures, which had the highest carbon sequestering efficiency. A plausible scenario where only 5% of highly-cleared areas (<30% native vegetation cover remaining) of temperate Australia are reforested showed substantial mitigation potential. Total carbon sequestration after 15 years was up to 25 Mt CO2-e year−1 when carbon and biodiversity goals were balanced and 13 Mt CO2-e year−1 if block plantings of highest biodiversity potential were established. Even when reforestation was restricted to marginal agricultural land (<$2000 ha−1 land value, 28% of the land under agriculture in Australia), total mitigation potential after 15 years was 17–26 Mt CO2-e year−1 using narrow belts of mallee plantings. This work provides guidance on land use to governments and planners. We show that the multiple benefits of young tree plantings can be balanced by manipulating planting width and species choice at establishment. In highly-cleared areas, such plantings can sequester substantial biomass carbon while improving biodiversity and causing negligible loss of agricultural land.
Resumo:
Sodium cyanide poison is potentially a more humane method to control wild dogs than sodium fluoroacetate (1080) poison. This study quantified the clinical signs and duration of cyanide toxicosis delivered by the M-44 ejector. The device delivered a nominal 0.88 g of sodium cyanide, which caused the animal to loose the menace reflex in a mean of 43 s, and the animal was assumed to have undergone cerebral hypoxia after the last visible breath. The mean time to cerebral hypoxia was 156 s for a vertical pull and 434 s for a side pull. The difference was possibly because some cyanide may be lost in a side pull. There were three distinct phases of cyanide toxicosis: the initial phase was characterised by head shaking, panting and salivation; the immobilisation phase by incontinence, ataxia and loss of the righting reflex; and the cerebral hypoxia phase by a tetanic seizure. Clinical signs that were exhibited in more than one phase of cyanide toxicosis included retching, agonal breathing, vocalisation, vomiting, altered levels of ocular reflex, leg paddling, tonic muscular spasms, respiratory distress and muscle fasciculations of the muzzle.
Resumo:
Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.