8 resultados para Transverse energy

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterisation and investigation of a number of key wood properties, critical for further modelling work, has been achieved. The key results were: • Morphological characterisation, in terms of fibre cell wall thickness and porosity, was completed. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Results were consistent with published data for other species. • Viscoelastic properties of wood were shown to differ greatly between species and in the radial and tangential directions, largely due to anatomical and chemical variations. Consistent with published data, the radial direction shows higher stiffness, internal friction and glass transition temperature than the tangential directions. The loss of stiffness over the measured temperature range was greater in the tangential direction than the radial direction. Due to time dependant molecular relaxation, the storage modulus and glass transition temperature decreased with decreasing test frequency, approaching an asymptotic limit. Thus the viscoelastic properties measured at lower frequencies are more representative of static material. • Dynamic interactions between relative humidity, moisture content and shrinkage of four Australian hardwood timbers can be accurately monitored on micro-samples using a specialised experimental device developed by AgroParisTech – ENGREF. The device generated shrinkage data that varied between species but were consistent (repeatable) within a species. Collapse shrinkage was clearly evident with this method for Eucalyptus obliqua, but not with other species, consistent with industrial seasoning experience. To characterise the wood-water relations of this species, free of collapse, thinner sample sections (in the R-T plane) should be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increase water use efficiency and productivity, and reduce energy and water usage and costs, of dairy and fodder enterprises, to reduce costs of milk production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Management of environmental emissions is a significant challenge and opportunity for all of horticulture, including the protected cropping sector. Energy is a significant input in controlled environment horticulture and an important source of environmental emissions. Energy underlies this industry’s capacity to provide a consistent supply of fresh, quality, safe food in a changing global climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 5 million timber utility poles are currently in-service throughout Australia’s energy networks. Most were produced from select native forest-grown hardwood species having the required structural characteristics and naturally-durable heartwood. Anecdotal evidence suggests that up to 70% of the timber poles that are currently in-service were installed over the 20 years following the end of World War Two, and these poles are likely to require replacement or remedial maintenance over the next decade. The purposes of this review were to clarify the supply and demand situation for traditional timber poles, and to investigate alternatives in terms of their potential availability and suitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterisation of a number of key wood properties utilising ‘state of the art’ tools was achieved for four commercial Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum drying models currently under development. Morphological characterisation was completed using a combination of ESEM, optical microscopy and a custom vector-based image analysis software. A clear difference in wood porosity, size, wall thickness and orientation was evident between species. Wood porosity was measured using a combination of fibre and vessel porosity. A highly sensitive microbalance and scanning laser micrometres were used to measure loss of moisture content in conjunction with directional shrinkage on micro-samples of E. obliqua to investigate the validity of measuring collapse-free shrinkage in very thin sections. Collapse-free shrinkage was characterised, and collapse propensity was verified when testing thicker samples. Desorption isotherms were calculated for each species using wood–water relations data generated from shrinkage experiments. Fibre geometry and wood shrinkage anisotropy were used to explain the observed difficulty in drying of the different species in terms of collapse and drying stress-related degrade.