5 resultados para Training Sample
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Gascoyne-Murchison region of Western Australia experiences an arid to semi-arid climate with a highly variable temporal and spatial rainfall distribution. The region has around 39.2 million hectares available for pastoral lease and supports predominantly catle and sheep grazing leases. In recent years a number of climate forecasting systems have been available offering rainfall probabilities with different lead times and a forecast period; however, the extent to which these systems are capable of fulfilling the requirements of the local pastoralists is still ambiguous. Issues can range from ensuring forecasts are issued with sufficient lead time to enable key planning or decisions to be revoked or altered, to ensuring forecast language is simple and clear, to negate possible misunderstandings in interpretation. A climate research project sought to provide an objective method to determine which available forecasting systems had the greatest forecasting skill at times of the year relevant to local property management. To aid this climate research project, the study reported here was undertaken with an overall objective of exploring local pastoralists' climate information needs. We also explored how well they understand common climate forecast terms such as 'mean', median' and 'probability', and how they interpret and apply forecast information to decisions. A stratified, proportional random sampling was used for the purpose of deriving the representative sample based on rainfall-enterprise combinations. In order to provide more time for decision-making than existing operational forecasts that are issued with zero lead time, pastoralists requested that forecasts be issued for May-July and January-March with lead times counting down from 4 to 0 months. We found forecasts of between 20 and 50 mm break-of-season or follow-up rainfall were likely to influence decisions. Eighty percent of pastoralists demonstrated in a test question that they had a poor technical understanding of how to interpret the standard wording of a probabilistic median rainfall forecast. this is worthy of further research to investigate whether inappropriate management decisions are being made because the forecasts are being misunderstood. We found more than half the respondents regularly access and use weather and climate forecasts or outlook information from a range of sources and almost three-quarters considered climate information or tools useful, with preferred methods for accessing this information by email, faxback service, internet and the Department of Agriculture Western Australia's Pastoral Memo. Despite differences in enterprise types and rainfall seasonality across the region we found seasonal climate forecasting needs were relatively consistent. It became clear that providing basic training and working with pastoralists to help them understand regional climatic drivers, climate terminology and jargon, and the best ways to apply the forecasts to enhance decision-making are important to improve their use of information. Consideration could also be given to engaging a range of producers to write the climate forecasts themselves in the language they use and understand, in consultation with the scientists who prepare the forecasts.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
This paper reports on a purposive survey study which aimed to identify needs for the development, delivery and evaluation of applied climate education for targeted groups, to improve knowledge and skills to better manage under variable climatic conditions. The survey sample consisted of 80 producers and other industry stakeholders in Australia (including representatives from consulting, agricultural extension and agricultural education sectors), with a 58% response rate to the survey. The survey included an assessment of (i) knowledge levels of the Southern Oscillation Index and sea surface temperatures, and (ii) skill and ability in interpreting weather and climate parameters. Results showed that despite many of the respondents having more than 20 years experience in their industry, the only formal climate education or training undertaken by most was a 1-day workshop. Over 80% of the applied climate skills listed in the survey were regarded by respondents as essential or important, but only 42% of educators, 30% of consultants and 28% of producers rated themselves as competent in applying such skills. Essential skills were deemed as those that would enable respondents or their clients to be better prepared for the next extended wet or dry meteorological event, and improved capability in identifying and capitalising on key decision points from climate information and a seasonal climate outlook. The complex issue of forecast accuracy is a confounding obstacle for many in the application of climate information and forecasts in management. Addressing this problem by describing forecast 'limitations and skill' can help to overcome this problem. The survey also highlighted specific climatic tactical and strategic information collated from grazing, cropping and agribusiness enterprises, and showed the value of such information from a users perspective.
Resumo:
CRC60125 Grain Biosecurity Training Program. Stored grain is subject to major biosecurity problems which have the potential to significantly reduce the quality of the stored grain and to make it unsuitable for both domestic and international markets. The problems include attack by insect pests, rodents, birds and pathogens like fungi, as well as contamination by weed seeds, mycotoxins and pest faeces.
Resumo:
Microbes and their exopolysaccharides (EPS) can block xylem vessels, thereby increasing the hydraulic resistance and decreasing the vase life of cut flowers and foliage. Scanning electron microscopy (SEM) provides a powerful tool for investigation of bacteria-induced xylem occlusion. However, conventional preparation protocols for SEM involving chemicals can cause loss of hydrated EPS material, and thereby damage the bacterial biofilms during dehydration. A modified chemical fixation protocol involving pre-fixation with 75 mM lysine plus 2.5% glutaraldehyde followed by the normal fixation in 3% glutaraldehyde was, therefore, tested for improved preservation of bacterial biofilm at the stem-ends of cut Acacia holosericea foliage stems. Stem-end segments with different stages of bacterial growth were obtained from stems stood into water. The lysine-based protocol was compared with four other processing protocols of critical point drying (CPD) without fixation (control), freeze-drying (FD), conventional chemical fixation followed by drying with hexamethyldisilazane (HMDS), and conventional chemical fixation with CPD. The non-fixed control. FD and the glutaraldehyde fixation with HMDS drying gave poor preservation of hydrated material, including bacterial EPS. Conventional glutaraldehyde fixation followed by CPD was superior to these three methods in terms of better preserving the EPS. However, this fourth method gave condensation of biofilms during dehydration. In contrast, the modified lysine-based protocol resulted in superior preservation of EPS and biofilm structure. Thus, this fifth method was the most appropriate for examination of bacterial stem-end blockage in cut ornamentals. (C) 2012 Elsevier B.V. All rights reserved.