15 resultados para Trail-following
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Recolonisation and succession in a multi-species tropical seagrass meadow was examined by creating gaps (50×50 cm) in the meadow and manipulating the supply of sexual and asexual propagules. Measurements of leaf shoot density and estimates of above-ground biomass were conducted monthly to measure recovery of gaps between September 1995 and November 1997. Measurements of the seeds stored in the sediment (seed bank) and horizontal rhizome growth of colonising species were also conducted to determine their role in the recovery process. Asexual colonisation through horizontal rhizome growth from the surrounding meadow was the main mechanism for colonisation of gaps created in the meadow. The seed bank played no role in recolonisation of cleared plots. Total shoot density and above-ground biomass (all species pooled) of cleared plots recovered asexually to the level of the undisturbed controls in 10 and 7 months, respectively. There was some sexual recruitment into cleared plots where asexual colonisation was prevented but seagrass abundance (shoot density and biomass) did not reach the level of unmanipulated controls. Seagrass species did not appear to form seed banks despite some species being capable of producing long-lived seeds. The species composition of cleared plots remained different to the undisturbed controls throughout the 26-month experiment. Syringodium isoetifolium was a rapid asexual coloniser of disturbed plots and remained at higher abundances than in the control treatments for the duration of the study. S. isoetifolium had the fastest horizontal rhizome growth of species asexually colonising cleared plots (6.9 mm day−1). Halophila ovalis was the most successful sexual coloniser but was displaced by asexually colonising species. H. ovalis was the only species observed to produce fruits during the study. Small disturbances in the meadow led to long-term (>2 years) changes in community composition. This study demonstrated that succession in tropical seagrass communities was not a deterministic process. Variations in recovery observed for different tropical seagrass communities highlighted the importance of understanding life history characteristics of species within individual communities to effectively predict their response to disturbance. A reproductive strategy involving clonal growth and production of long-lived, locally dispersed seeds is suggested which may provide an evolutionary advantage to plants growing in tropical environments subject to temporally unpredictable major disturbances such as cyclones
Resumo:
Instances of morbidity amongst rock lobsters (Panulirus cygnus) arriving at factories in Western Australia (WA) have been attributed to stress during post-harvest handling. This study used discriminant analysis to determine whether physiological correlates of stress following a period of simulated post-harvest handling had any validity as predictors of future rejection or morbidity of western rock lobsters. Groups of 230 western rock lobsters were stored for 6 h in five environments (submerged/flowing sea water, submerged/re-circulating sea water, humid air, flowing sea water spray, and re-circulated sea water spray). The experiment was conducted in late spring (ambient sea water 22°C), and repeated again in early autumn (ambient sea water 26°C). After 6 h treatment, each lobster was graded for acceptability for live export, numbered, and its hemolymph was sampled. The samples were analysed for a number of physiological and health status parameters. The lobsters were then stored for a week in tanks in the live lobster factory to record mortality. The mortality of lobsters in the factory was associated with earlier deviations in hemolymph parameters as they emerged from the storage treatments. Discriminant analysis (DA) of the hemolymph assays enabled the fate of 80-90% of the lobsters to be correctly categorised within each experiment. However, functions derived from one experiment were less accurate at predicting mortality when applied to the other experiments. One of the reasons for this was the higher mortality and the more severe patho-physiological changes observed in lobsters stored in humid air or sprays at the higher temperature. The analysis identified lactate accumulation during emersion and associated physiological and hemocyte-related effects as a major correlate of mortality. Reducing these deviations, for example by submerged transport, is expected to ensure high levels of survival. None of the indicators tested predicted mortality with total accuracy. The simplest and most accurate means of comparing emersed treatments was to count the mortality afterwards.
Resumo:
This study determined the starvation tolerance of Tribolium castaneum (Herbst), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in terms of both adult survival and reproduction, the impact of starvation on reproduction not having been studied before. Experiments were conducted at 30°C and 55% or 70% r.h. using a laboratory strain and a field strain of each species. The number of progeny was a better indicator of the impact of starvation on a species than adult survival. Tribolium castaneum was the most tolerant species, requiring up to 35 d starvation before no progeny were produced. Rhyzopertha dominica and S. oryzae required up to 8 d starvation before no progeny were produced. The results suggest that hygiene will have a greater impact on populations of S. oryzae and R. dominica than T. castaneum.
Resumo:
In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.
Resumo:
Koster´s curse is a highly invasive, perennial shrub with potential to become a major weed in many parts of Queensland and elsewhere in Australia. Presently, there is one infestation discovered in Australia and the species is a Class 1 weed. It grows to 5 m and can produce over 500 berries annually which are dispersed by birds and water. This study quantified growth and the effects of damage on survival and time to reproduction under both field and shade house conditions in the Wet Tropics of north Queensland. Plants recovered to their original size and were capable of setting seed in as few as 86 days and 194 days after being cut back to 10 cm and 0 cm respectively.
Resumo:
The cattle tick, Rhipicephalus (Boophilus) microplus, and the diseases it transmits pose a persistent threat to tropical beef production. Genetic selection of host resistance has become the method of choice for non-chemical control of cattle tick. Previous studies have suggested that larval stages are most susceptible to host resistance mechanisms. To gain insights into the molecular basis of host resistance that occurs during R. microplus attachment, we assessed the abundance of proteins (by isobaric tag for relative and absolute quantitation (iTRAQ) and Western blot analyses) and mRNAs (by quantitative reverse transcription PCR (qRT-PCR)) in skin adjacent to tick bite sites from high tick-resistant (HR) and low tick-resistant (LR) Belmont Red cattle following challenge with cattle tick. We showed substantially higher expression of the basal epidermal keratins KRT5 and KRT14, the lipid processing protein, lipocalin 9 (LCN9), the epidermal barrier catalysing enzyme transglutaminase 1 (TGM1), and the transcriptional regulator B lymphocyte-induced maturation protein 1 (Blimp1) in HR skin. Our data reveals the essential role of the epidermal permeability barrier in conferring greater resistance of cattle to tick infestation, and suggest that the physical structure of the epidermal layers of the skin may represent the first line of defence against ectoparasite invasion. Crown Copyright. © Australian Society for Parasitology Inc.
Resumo:
The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.
Resumo:
This paper quantifies gaseous N losses due to ammonia volatilisation and denitrification under controlled conditions at 30 degrees C and 75% to 150% of Field Capacity (FC). Biosolids were mixed with two contrasting soils from subtropical Australia at a rate designed to meet crop N requirements for irrigated cotton or maize (i.e., equivalent to 180 kg N ha(-1)). In the first experiment, aerobically (AE) and anaerobically (AN) digested biosolids were mixed into a heavy Vertosol soil and then incubated for 105 days. Ammonia volatilization over 72 days accounted for less than 4% of the applied NH4-N but 24% (AN) to 29% (AE) of the total applied biosolids' N was lost through denitrification in 105 days. In the second experiment AN biosolids with and without added polyacrimide polymer were mixed with either a heavy Vertosol or a lighter Red Ferrosol and then incubated for 98 days. The N loss was higher from the Vertosol with 16-29% of total N applied versus the Red Ferrosol with 7-10% of total N applied, while addition of polymer to the biosolids increased N loss from 7 to 10% and from 16 to 29% in the Red Ferrosol and Vertosol, respectively. A major product from the denitrification process was N-2 gas, accounting for >90% of the emitted N gases from both experiments. Our findings demonstrate that denitrification could be a major pathway of gaseous N losses under warm and moist conditions.
Resumo:
Live vaccines containing attenuated parasite strains are increasingly used to control chicken coccidiosis. In this paper antibody responses elicited by infections with wild-type and attenuated strains of Eimeria tenella and E.necatrix were characterized by immunoblotting and ELISA with homologous and heterologous antisera. Few differences between antisera from birds infected with wild and attenuated strains of E. tenella were evident in immunoblots conducted with merozoite antigen preparations from both E. tenella strains, however the reactivity of sera raised in birds infected with the wild-type strain was noticeably more intense. In ELISAs conducted with merozoite antigen preparations, antisera from birds infected with the wild-type strains of E. tenella and E. necatrix consistently produced a significantly higher (P < 0.05) antibody response than antisera from birds infected with the attenuated strains. Likewise, avidity ELISAs conducted with the E. tenella strains demonstrated that antibodies in birds infected with the wild-type strain were of significantly higher avidity (P < 0.05) than antibodies in birds infected with the attenuated strain. The differences in the antibody responses are probably due to changes in the attenuated strain as a result of selection for precocious development and the less severe tissue damage and inflammation of the intestine resulting from infection with the attenuated strain.
Resumo:
The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.
Resumo:
Phosphine fumigation is commonly used to disinfest grain of insect pests. In fumigations which allow insect survival the question of whether sublethal exposure to phosphine affects reproduction is important for predicting population recovery and the spread of resistance. Two laboratory experiments addressed this question using strongly phosphine resistant lesser grain borer, Rhyzopertha dominica (F.). Offspring production was examined in individual females which had been allowed to mate before being fumigated for 48 h at 0.25 mg L -1. Surviving females produced offspring but at a reduced rate during a two-week period post fumigation compared to unfumigated controls. Cumulative fecundity of fumigated females from 4 weeks of oviposition post fumigation was 25% lower than the cumulative fecundity of unfumigated females. Mating potential post fumigation was examined when virgin adults (either or both sexes) were fumigated individually (48 h at 0.25 mg L -1) and the survivors were allowed to mate and reproduce in wheat. All mating combinations produced offspring but production in the first week post fumigation was significantly suppressed compared to the unfumigated controls. Offspring suppression was greatest when both sexes were exposed to phosphine followed by the pairing of fumigated females with unfumigated males and the least suppression was observed when males only were fumigated. Cumulative fecundity from 4 weeks oviposition post fumigation of fumigated females paired with fumigated males was 17% lower than the fecundity of unfumigated adult pairings. Both of these experiments confirmed that sublethal exposure to phosphine can reduce fecundity in R. dominica.
Resumo:
In recent years, there has been intense interest in the potential health benefits of dietary derived plant polyphenols and antioxidants. A new variety of Prunus salicina, Queen Garnet plum (QGP), was developed as a high anthocyanin, high antioxidant plum, in a Queensland Government breeding program. Following consumption of 400 mL QGP juice (QGPJ; 1,117 mg anthocyanins) by two healthy male subjects, QGP anthocyanins (cyanidin-3-glucoside and cyanidin-3-rutinoside) were excreted mainly as methylated and glucuronidated metabolites in urine (0.5% of the ingested dose within 24 h). Furthermore, QGPJ intake resulted in a threefold increase in hippuric acid excretion (potential biomarker for total polyphenols intake and metabolite), an increased urinary antioxidant capacity and a decreased malondialdehyde excretion (biomarker for oxidative stress) within 24 h as compared with the polyphenol-/antioxidant-free control. Results from this pilot study suggest that metabolites, and not the native QGP anthocyanins/polyphenols, are most likely the bioactive compounds in vivo.
Resumo:
Conyza bonariensis is a major weed infesting zero-tilled cropping systems in subtropical Australia, particularly in wheat and winter fallows. Uncontrolled C.bonariensis survives to become a problem weed in the following crops or fallows. As no herbicide has been registered for C.bonariensis in wheat, the effectiveness of 11 herbicides, currently registered for other broad-leaved weeds in wheat, was evaluated in two pot and two field experiments. As previous research showed that the age of C.bonariensis, and to a lesser extent, the soil moisture at spraying affected herbicide efficacy, these factors also were investigated. The efficacy of the majority of herbicide treatments was reduced when large rosettes (5-15cm diameter) were treated, compared with small rosettes (<5cm diameter). However, for the majority of herbicide treatments, the soil moisture did not affect the herbicide efficacy in the pot experiments. In the field, a delay in herbicide treatment of 2 weeks reduced the herbicide efficacy consistently across herbicide treatments, which was related to weed age but not to soil moisture differences. Across all the experiments, four herbicides controlled C.bonariensis in wheat consistently (83-100%): 2,4-D; aminopyralid + fluroxypyr; picloram + MCPA + metsulfuron; and picloram + high rates of 2,4-D. Thus, this problem weed can be effectively and consistently controlled in wheat, particularly when small rosettes are treated, and therefore C.bonariensis will have a less adverse impact on the following fallow or crop.
Resumo:
Parthenium weed (Parthenium hysterophorus L.) is believed to reduce the above- and below-ground plant species diversity and the above-ground productivity in several ecosystems. We quantified the impact of this invasive weed upon species diversity in an Australian grassland and assessed the resulting shifts in plant community composition following management using two traditional approaches. A baseline plant community survey, prior to management, showed that the above-ground community was dominated by P. hysterophorus, stoloniferous grasses, with a further high frequency of species from Malvaceae, Chenopodiaceae and Amaranthaceae. In heavily invaded areas, P. hysterophorus abundance and biomass was found to negatively correlate with species diversity and native species abundance. Digitaria didactyla Willd. was present in high abundance when P. hysterophorus was not, with these two species, contributing most to the dissimilarity seen between areas. The application of selective broad leaf weed herbicides significantly reduced P. hysterophorus biomass under ungrazed conditions, but this management did not yet result in an increase in species diversity. In the above-ground community, P. hysterophorus was partly replaced by the introduced grass species Cynodon dactylon L. (Pers.) 1 year after management began, increasing the above-ground forage biomass production, while D. didactyla replaced P. hysterophorus in the below-ground community. This improvement in forage availability continued to strengthen over the time of the study resulting in a total increase of 80% after 2 years in the ungrazed treatment, demonstrating the stress that grazing was imposing upon this grassland-based agro-ecosystem and showing that it is necessary to remove grazing to obtain the best results from the chemical management approach.