16 resultados para Tourism. Innovation. Regional systems. Cultural tourism. Landmark Region
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Queensland fruit flies Bactrocera tryoni and B. neohumeralis are considered major quarantine pests of tomato, a major crop in the horticultural production district around Bowen, North Queensland, Australia. Preharvest and/or postharvest treatments are required to meet the market access requirements of both domestic and international trading partners. The suspension from use of dimethoate and fenthion, the two insecticides used for fruit fly control, has resulted in the loss of both pre and postharvest uses in fresh tomato. Research undertaken quantitatively at Bowen evaluated the effectiveness of pre-harvest production systems without specific fruit fly controls and postharvest mitigation measures in reducing the risk of fruit fly infestation in tomato. A district-wide trapping using cue-lure baited traps was undertaken to determine fruit fly seasonal patterns in relation to the cropping seasons. A total of 17,626 field-harvested and 11,755 pack-house tomatoes were sampled from ten farms over three cropping seasons (2006-2009). The fruit were incubated and examined for fruit fly infestation. No fruit fly infested fruit were recorded over the three seasons in either the field or the pack-house samples. Statistical analyses showed that upper infestation levels were extremely low (between 0.025 and 0.062%) at the 95% confidence level. The trap catches showed a seasonal pattern in fruit fly activity, with low numbers during the autumn and winter months, rising slightly in spring and peaking in summer. This seasonal pattern was similar over the four seasons. The main two species of fruit fly caught were B. tryoni and B. neohumeralis. Based on the results, it is clear that the risk of fruit fly infestation is extremely low under the current production systems in the Bowen region.
Resumo:
Echinochloa colona is the most common grass weed of summer fallows in the grain-cropping systems of the subtropical region of Australia. Glyphosate is the most commonly used herbicide for summer grass control in fallows in this region. The world's first population of glyphosate-resistant E. colona was confirmed in Australia in 2007 and, since then, >70 populations have been confirmed to be resistant in the subtropical region. The efficacy of alternative herbicides on glyphosate-susceptible populations was evaluated in three field experiments and on both glyphosate-susceptible and glyphosate-resistant populations in two pot experiments. The treatments were knockdown and pre-emergence herbicides that were applied as a single application (alone or in a mixture) or as part of a sequential application to weeds at different growth stages. Glyphosate at 720 g ai ha−1 provided good control of small glyphosate-susceptible plants (pre- to early tillering), but was not always effective on larger susceptible plants. Paraquat was effective and the most reliable when applied at 500 g ai ha−1 on small plants, irrespective of the glyphosate resistance status. The sequential application of glyphosate followed by paraquat provided 96–100% control across all experiments, irrespective of the growth stage, and the addition of metolachlor and metolachlor + atrazine to glyphosate or paraquat significantly reduced subsequent emergence. Herbicide treatments have been identified that provide excellent control of small E. colona plants, irrespective of their glyphosate resistance status. These tactics of knockdown herbicides, sequential applications and pre-emergence herbicides should be incorporated into an integrated weed management strategy in order to greatly improve E. colona control, reduce seed production by the sprayed survivors and to minimize the risk of the further development of glyphosate resistance.
Resumo:
This project is part of the Northern Grazing Systems (NGS) projects which aim to increase adoption of innovative best-practice grazing management by beef producers throughout Queensland, Northern Territory and the Kimberley and Pilbara regions of Western Australia.
Resumo:
The CQ Cotton Regional Extension project has been a key to the delivery of emerging, cutting edge research information and knowledge to the Central Queensland cotton industry. The direct relevance of southern research to cotton production under the conditions experienced in CQ always has been an issue which could be addressed through regional assessment and adaptation. The project links the national research to the region through development and extension, with a strong focus on the major industry production issues including but not limited to disease, Integrated Pest Management (IPM), soils, nutrition and integrated weed management. Susan Mass has supported the implementation of national industry-wide programs particularly the industry Best Management Practices program (myBMP). This project has successfully transitioned to a focus on delivering national outcomes in target lead areas as part of National Development and Delivery Team established by Cotton CRC, CRDC and Cotton Australia, while maintaining a regional extension presence for Central Queensland cotton & grain farming systems. Susan Mass has very effectively merged and integrated strong regional extension support to cotton growers in Central Queensland with delivery of industry extension priorities across the entire industry in the Development and Delivery Team model. Susan is the target lead for disease and farm hygiene. Recognising the challenges of having regionally relevant research in Central Queensland, this project has facilitated locally based research including boll rot, Bt cotton resistance management, and mealybug biology through strong collaborations. This collaborative approach has included linkage to Department of Environment and Resource Managmeent (DERM) groups and myBMP programs resulting in a high uptake in CQ.
Resumo:
A wide range of goals and objectives have to be taken into account in natural resources management. Defining these objectives in operational terms, including dimensions such as sustainability, productivity, and equity, is by no means easy, especially if they must capture the diversity of community and stakeholder values. This is especially true in the coastal zone where land activities affect regional marine ecosystems. In this study, the aim was firstly to identify and hierarchically organise the goals and objectives for coastal systems, as defined by local stakeholders. Two case study areas are used within the Great Barrier Reef region being Mackay and Bowen–Burdekin. Secondly, the aim was to identify similarities between the case study results and thus develop a generic set of goals to be used as a starting point in other coastal communities. Results show that overarching high-level goals have nested sub-goals that contain a set of more detailed regional objectives. The similarities in high-level environmental, governance, and socio-economic goals suggest that regionally specific objectives can be developed based on a generic set of goals. The prominence of governance objectives reflects local stakeholder perceptions that current coastal zone management is not achieving the outcomes they feel important and that there is a need for increased community engagement and co-management. More importantly, it raises the question of how to make issues relevant for the local community and entice participation in the local management of public resources to achieve sustainable environmental, social, and economic management outcomes. © 2015 Springer-Verlag Berlin Heidelberg
Resumo:
This project has the overall aim of reducing the impacts of diseases of winter cereals, pulses, sunflower sorghum and nematodes on farming systems in the GRDC northern region. Integrated disease management packages which involve combinations of resistance, targeted fungicide applications, cultural practices such as rotations, and disease modelling will be developed and extended to clients. Structured surveillance activities will enable the monitoring of the distribution and importance of diseases and pathotypes, the early detection of significant outbreaks of endemic and exotic diseases, and a rapid and appropriate response to these outbreaks.
Resumo:
New regional extension project for the cotton/grains farming systems on the Darling Downs and Border Rivers with CRDC and Cotton CRC based on the CRDC/Agri-Science Queensland discussion paper.
Resumo:
This project encompasses laboratory, glasshouse and field research to improve N fixation in grain and forage legumes in the northern region and assess compatability of rhizobial strains with current and new legume varieties.
Resumo:
The principal aim of the project was to contribute to the continuing adoption of integrated pest management (IPM) by grain growers in the GRDC's northern region, specifically, the Darling Downs and Central Queensland. This project provided an ongoing commitment to the development and refinement of pest management tactics, and continued support for the grower community by raising awareness of management options and strategies for their implementation. This outcome was achieved through facilitated learning by growers and their advisers via grower group meetings, field day demonstrations, technical literature and presentations by entomologists at technical forums.
Resumo:
The emerging disease program seeks to gain information on the distribution of cereal pathogens\pathotypes and potential for outbreaks across the norther region and options for their control. It is looking for an improved understanding of varietal (APR) reaction to stripe rust (YR) in prevailing weather conditions and in the face of climate change. Replicated field trials are used in the evaluation of varietal, cultural and chemical management of YR. Best management practice packages are disseminated to stake holders, including a YR predictive tool.
Resumo:
Research, development and extension to achieve the implementation of Integrated Pest Management in grains-cotton broadacre farming systems.
Resumo:
Technology demonstration sites for remote water management for Roma region.
Resumo:
Broadscale irrigation is a major land use in many of the priority neighbourhood catchments (45,218 hectares in Central Highlands and Dawson) and there is a requirement to provide technical support to sub-regional group field officers and landholders in these priority catchments. This technical support will assist field staff and land managers to identify and implement appropriate, sustainable technologies and management practices.
Resumo:
Grazing for Healthy Coastal Wetlands has been developed to provide graziers, landowners and extension officers with information on managing grazing in and around Queensland’s coastal wetlands to maintain healthy coastal wetlands and productive grazing enterprises. It provides practical advice on how grazing and associated land management practices can be implemented to support the long-term health of coastal wetlands whilst maintaining production. The guidelines have been compiled from published literature, grazier knowledge, wetlands managers and the experience of extension and natural resource management professionals. They reflect the current knowledge of suitable management practices for coastal wetlands. They are designed to complement and be considered in conjunction with existing information resources including the EDGEnetwork Grazing Land Management series and best management practice guidelines from regional Natural Resource Management (NRM) groups. While the recommendations apply broadly to Queensland’s coastal wetlands, regional, catchment and landscape-scale variations in wetland characteristics and the objectives of the individual grazing enterprise should be taken into account in planning and deciding management actions for wetlands. An individual grazing property may even have a range of wetland types with different management needs and objectives which should be identified during whole of property planning. Specific land and wetland management advice should also be sought from local grazing extension officers and NRM professionals.
Resumo:
Harvest weed seed control (HWSC) is a new approach which targets weed seed removal and/or destruction during the crop harvest operation. The success of HWSC is dependant upon weed seed retention at harvest. To identify and define the potential value of HWSC in northern farming systems, we conducted a field survey. In total 1400 transects across 70 paddocks assessed weed distribution, density and seed production at harvest time in wheat, chickpea and sorghum crops. Seventy weed species were identified, of which many had large seed numbers retained at crop harvest. The most prevalent included common sowthistle, flaxleaf fleabane, awnless barnyard grass, wild oat, and African turnip weed. Our field survey has shown there is a role for HWSC in the northern farming system. Therefore the efficacy of specific HWSC systems on problematic weeds should be evaluated in the northern region.