5 resultados para Total Analysis Systems
em eResearch Archive - Queensland Department of Agriculture
The use of genetic correlations to evaluate associations between SNP markers and quantitative traits
Resumo:
Open-pollinated progeny of Corymbia citriodora established in replicated field trials were assessed for stem diameter, wood density, and pulp yield prior to genotyping single nucleotide polymorphisms (SNP) and testing the significance of associations between markers and assessment traits. Multiple individuals within each family were genotyped and phenotyped, which facilitated a comparison of standard association testing methods and an alternative method developed to relate markers to additive genetic effects. Narrow-sense heritability estimates indicated there was significant additive genetic variance within this population for assessment traits ( h ˆ 2 =0.28to0.44 ) and genetic correlations between the three traits were negligible to moderate (r G = 0.08 to 0.50). The significance of association tests (p values) were compared for four different analyses based on two different approaches: (1) two software packages were used to fit standard univariate mixed models that include SNP-fixed effects, (2) bivariate and multivariate mixed models including each SNP as an additional selection trait were used. Within either the univariate or multivariate approach, correlations between the tests of significance approached +1; however, correspondence between the two approaches was less strong, although between-approach correlations remained significantly positive. Similar SNP markers would be selected using multivariate analyses and standard marker-trait association methods, where the former facilitates integration into the existing genetic analysis systems of applied breeding programs and may be used with either single markers or indices of markers created with genomic selection processes.
Resumo:
The financial health of beef cattle enterprises in northern Australia has declined markedly over the last decade due to an escalation in production and marketing costs and a real decline in beef prices. Historically, gains in animal productivity have offset the effect of declining terms of trade on farm incomes. This raises the question of whether future productivity improvements can remain a key path for lifting enterprise profitability sufficient to ensure that the industry remains economically viable over the longer term. The key objective of this study was to assess the production and financial implications for north Australian beef enterprises of a range of technology interventions (development scenarios), including genetic gain in cattle, nutrient supplementation, and alteration of the feed base through introduced pastures and forage crops, across a variety of natural environments. To achieve this objective a beef systems model was developed that is capable of simulating livestock production at the enterprise level, including reproduction, growth and mortality, based on energy and protein supply from natural C4 pastures that are subject to high inter-annual climate variability. Comparisons between simulation outputs and enterprise performance data in three case study regions suggested that the simulation model (the Northern Australia Beef Systems Analyser) can adequately represent the performance beef cattle enterprises in northern Australia. Testing of a range of development scenarios suggested that the application of individual technologies can substantially lift productivity and profitability, especially where the entire feedbase was altered through legume augmentation. The simultaneous implementation of multiple technologies that provide benefits to different aspects of animal productivity resulted in the greatest increases in cattle productivity and enterprise profitability, with projected weaning rates increasing by 25%, liveweight gain by 40% and net profit by 150% above current baseline levels, although gains of this magnitude might not necessarily be realised in practice. While there were slight increases in total methane output from these development scenarios, the methane emissions per kg of beef produced were reduced by 20% in scenarios with higher productivity gain. Combinations of technologies or innovative practices applied in a systematic and integrated fashion thus offer scope for providing the productivity and profitability gains necessary to maintain viable beef enterprises in northern Australia into the future.
Resumo:
This project is part of the Northern Grazing Systems (NGS) projects which aim to increase adoption of innovative best-practice grazing management by beef producers throughout Queensland, Northern Territory and the Kimberley and Pilbara regions of Western Australia.
Resumo:
In this report we analyse the private financial-economic impacts of transitioning to improved sugarcane management in the National Resource Management regions of the Wet Tropics, Burdekin Dry Tropics and Mackay Whitsundays. In order to do so, we: 1) compare farm GMs; 2) present information on capital investment associated with the transition; 3) perform a net present value analysis of the investments and; 4) undertake a risk analysis for cane and legume yields and prices. It must be noted that transaction costs are not captured within this project.
Resumo:
With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.