4 resultados para Tobacco use--Prevention
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.
Resumo:
A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.
Resumo:
Strong statistical evidence was found for differences in tolerance to natural infections of Tobacco streak virus (TSV) in sunflower hybrids. Data from 470 plots involving 23 different sunflower hybrids tested in multiple trials over 5 years in Australia were analysed. Using a Bayesian Hierarchical Logistic Regression model for analysis provided: (i) a rigorous method for investigating the relative effects of hybrid, seasonal rainfall and proximity to inoculum source on the incidence of severe TSV disease; (ii) a natural method for estimating the probability distributions of disease incidence in different hybrids under historical rainfall conditions; and (iii) a method for undertaking all pairwise comparisons of disease incidence between hybrids whilst controlling the familywise error rate without any drastic reduction in statistical power. The tolerance identified in field trials was effective against the main TSV strain associated with disease outbreaks, TSV-parthenium. Glasshouse tests indicate this tolerance to also be effective against the other TSV strain found in central Queensland, TSV-crownbeard. The use of tolerant germplasm is critical to minimise the risk of TSV epidemics in sunflower in this region. We found strong statistical evidence that rainfall during the early growing months of March and April had a negative effect on the incidence of severe infection with greatly reduced disease incidence in years that had high rainfall during this period.
Resumo:
A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.