16 resultados para Timber physics.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
We examined the effect of surface-applied treatments on the above-ground decay resistance of the tenon of mortice-and-tenon timber joints designed to simulate joinery that is exposed to the weather. Joints made from untreated radiata pine, Douglas-fir, brush box, spotted gum and copper-chrome-arsenic (CCA) treated radiata pine were exposed to the weather for 9 y on above-ground racks at five sites throughout eastern Australia. Results indicate (1) a poorly maintained external paint film generally accelerated decay, (2) a brush coat of water-repellent preservative inside the joints often extended serviceability (in some cases by a factor of up to seven times that of untreated joints) and (3) the level of protection provided by a coat of primer applied inside the joint varied and in most cases was not as effective as the water-repellent preservative treatment.
Resumo:
Whether or not termites initiate damage to timber via the end grain may determine the need for spot-treating the exposed untreated cut ends of envelope-treated softwood framing material. Australian Coptotermes acinaciformis (Froggatt) were field-tested for their ability to initiate feeding via the end grain of timber (35 × 90 mm) treated with a repellent Tanalith® T envelope. Specimens of commercial radiata pine Pinus radiata D.Don framing timber (untreated) and slash pine Pinus elliottii Englem. (untreated and envelope-treated) were partially clad in fine stainless steel mesh. Clad and unclad specimens were exposed to C. acinaciformis near Townsville, North Queensland, Australia, for four months. Results showed that this species of termite can indeed damage timber via the end grain, including exposed untreated cut ends of envelope-treated material as demonstrated earlier for different populations of C. acinaciformis. Differences between the test conditions in field trials carried out at different times (where C. acinaciformis either did or did not damage timber via the end grain) are discussed. Clearly, outcomes from field studies with preservative-treated materials are dependent upon experimental conditions. Notably, the amount of bait wood (highly termite-susceptible timber substrate) offered in a given method can strongly influence the termite response. Further investigation is required to standardise this aspect of conditions in protocols for the assessment of wood preservatives.
Resumo:
The objective of this study was to gain an understanding for drying sawn timber produced from fast-grown, well-managed Queensland hardwood plantations using accelerated drying methods. Due to limited resources, this was a preliminary study and further work will be required to optimize schedules for industrial implementation. Three conventional kiln trials, including two for 38-mm-thick, 19-year-old plantation Gympie messmate (Eucalyptus cloeziana F. Muell.) and one for 25mm thick, 15-year-old plantation red mahogany (Eucalyptus pellita F. Muell.), and two vacuum kiln drying trials, one each for 38- and 25mm thick Gympie messmate, were conducted. Measurements of final cross-sectional moisture content, moisture content gradient, residual drying stress, and internal and surface checking were used to quantify dried quality. Drying schedules were chosen based on either existing published schedules or, in the case of the vacuum drying trials, existing schedules for species with similar wood density and dying degrade properties, or manipulated schedules based on the results of trials conducted during this study. The findings indicate that both species can be dried using conventional drying techniques with acceptable grade quality in approximately 75 percent of the drying time that industry is currently achieving when drying native forest timber of the same species. The vacuum drying time was 60 percent less than conventional drying for 38-mm-thick, 19-year-old Gympie messmate, although drying quality needs improving. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimized to suit the desired expectation. Additional research is required to further optimize the schedules to ensure acceptable grade qualities can be reliably achieved across all drying criteria and exploit opportunities to reduce drying times further.
Resumo:
Hydrofluoroalkanes are a specific category of hydrofluorocarbon (HFC) commonly used in refrigeration applications. Some HFCs hold potential for use as carrier fluids for preservatives used to protect timber above ground. They do not share the most significant disadvantages of currently used carriers for these applications. At ‘conventional’ operating pressures, they are capable of rapid, full penetration of some timbers generally considered refractory, such as spruce and the heartwood of radiata pine. But they are comparatively expensive and, while they are not detrimental to the ozone layer, they would contribute significantly to the greenhouse effect if released. Impregnation process conditions can be optimised to maximise biocide solubility and impregnation speed and depth.
Resumo:
Improving added value and Small Medium Enterprises capacity in the utilisation of plantation timber for furniture production in Jepara region of Indonesia: improving recovery, design, manufacturing, R&D and training capacities.
Resumo:
More than 5 million timber utility poles are currently in-service throughout Australia’s energy networks. Most were produced from select native forest-grown hardwood species having the required structural characteristics and naturally-durable heartwood. Anecdotal evidence suggests that up to 70% of the timber poles that are currently in-service were installed over the 20 years following the end of World War Two, and these poles are likely to require replacement or remedial maintenance over the next decade. The purposes of this review were to clarify the supply and demand situation for traditional timber poles, and to investigate alternatives in terms of their potential availability and suitability.
Resumo:
This project evaluated the timber quality, processing and performance characteristics of 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). Studies were undertaken to evaluate wood and mechanical properties, accelerated seasoning and veneer and plywood production. Above-ground and in-ground durability field tests were established at three locations in Queensland. Ground proixmity tests and L-joint tests were installed to gather data applicable to above-ground, weather-exposed end-use applications, and stake tests were installed to gather data applicable to in-ground, weather-exposed end-use applications.
Resumo:
Drying trials were conducted using two species of plantation grown eucalypt timbers: 19-year-old Eucalyptus cloeziana (Gympie messmate) and 15-year-old Eucalyptus pellita (red mahogany). The objective of this study was to gain an understanding of the drying potential of young plantation grown material using accelerated seasoning methods, a process expected to be critcal to the success of plantation hardwood products entering value added markets. The findings are encouraging, indicating that both species can be dried using conventional drying techniques much faster than industry is currently achieving when drying native forest timber. The results suggest that there is a definite drying time advantatge in vacuum drying over conventional methods for 19-year-old E. cloeziana. The findings have shown that through careful schedule manipulation and adjustment, the grade quality can be optimised to suit the desired expectation. As this study was limited to only a small number of trials, time and quality improvements are expected to be realised for both conventional and vacuum drying methods as more research is conducted.
Resumo:
The objectives of this project were to: 1. Understand why moisture gradients occur in Australian hardwoods during drying and their affects on the performance of timber in service; 2. Improve existing technology(ies) and/or processes to reduce moisture content (MC) variability between and within boards during drying of Australian hardwoods in an economical and practical manner.
Resumo:
Wood quality and properties of plantation grown trees differ from those from mature, natural grown trees and this has implications for processing, manufacturing and product performance. The wood properties of genetically improved and syliculturally managed plantation trees are affected by their faster growth rates younger harvest age. This report summarises the key wood properties of species that are the primary candidates for plantation forestry in the subtropical to tropical region of eastern Australia. The planned end uses for these trees vary from short-rotation pulp to high-value products such as poles, sawn timber for appearance products and engineered wood products including structural plywood and laminated veneer lumber (LVL).
Resumo:
Due to their efficiency, lightweight, ease of erection and low cost, steel and aluminium thin-walled structures have become very popular in the construction industry over the past few decades. Applications include roof and wall systems (purlins and girts), storage racks, and composite concrete and steel slabs. The effectiveness of these structures lies in the cross-sectional shape of the profiles which enhances their strength by controlling the three fundamental buckling modes: local, distortional, and global. However, despite the attractiveness of these structures, steel and aluminium are greenhouse gas intensive materials and do not produce sustainable structural products. This paper presents an investigation performed at the Griffith School of Engineering, Griffith University, which shows manufacturing these types of profiles in timber is possible. Short composite thinwalled timber Cee-sections (500 mm long) were fabricated by gluing together thin softwood (Araucaria cunninghamii) veneers (1 mm thick). Two types of Ceesections were considered, one with a web stiffener to increase the local buckling capacity of the profile and one without. The profiles were tested in compression and the test results are presented and discussed in the paper in terms of structural behaviour and performance. Further research directions are proposed in order to provide efficient and lightweight sustainable structural products to the timber industry. © RILEM 2014.
Resumo:
Identifying processing strategies and products that suit young plantation hardwoods has proved challenging with low product recoveries and/or unmarketable products being the outcome of many trials. The production of rotary veneer has been demonstrated as an effective method for converting plantation hardwood trees. Across nine processing studies that included six different plantation species (Dunn’s white gum, spotted gum, Gympie messmate, spotted gum hybrid, red mahogany and western white gum), simple spindleless lathe technology was used to process 914 veneer billets totally 37.4 m3.
Resumo:
Spinifex grasses are the dominant vegetative component in Australian grassland habitats, covering approximately 26% of the Australian landmass. Our ongoing work explores the utility of both the cellulosic and resinous components of this abundant biomass for modern applications and a potential economy for our Aboriginal collaborators. This study is focused on the optimisation of a resin extraction process using solvent, and the subsequent evaluation, via a field trial, of the potential use and efficacy of the resin as an anti-termite coating material. Termiticidal performance was evaluated by re-dissolving the extracted resin in acetone and coating on pine timber blocks. The resin-coated and control blocks were then exposed to a colony of Mastotermes darwiniensis’ (Froggatt) termites, which are the most primitive alive and destructive species in subterranean area, at a trial site in northeast Australia, for six months. The results clearly showed that spinifex resin effectively protected the timber from termite attack, while the uncoated control samples were extensively damaged. By demonstrating an enhanced termite resistance, we here report that plant resins that are produced by arid/semi-arid grasses could be potentially used as treatments to prevent termite attack.