37 resultados para Thompson
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F1 and F2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F1 and F2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes
Resumo:
Dugong habitats were considered in the design for the new zoning network for the Great Barrier Reef Marine Park as part of the Representative Areas Program. One of the specific design guidelines developed as part of the biophysical operational principles recommended that 50% of all high priority dugong habitats should be incorporated in the network of no-take areas. The high priority dugong habitat incorporated in no-take protection increased from 1396 to 3476 km2 (or 16.9-42.0% of all identified sites). Although this increase in protection fell short of the recommended 50%, overall the level of protection afforded by the Great Barrier Reef Marine Park Zoning Plan 2003 increased for all the locations identified.
Resumo:
Sunflower rust caused by Puccinia helianthi is the most important disease of sunflower in Australia with the potential to cause significant yield losses in susceptible hybrids. Rapid and frequent virulence changes in the rust fungus population limit the effective lifespan of commercial cultivars and impose constant pressure on breeding programs to identify and deploy new sources of resistance. This paper contains a synopsis of virulence data accumulated over 25 years, and more recent studies of genotypic diversity and sexual recombination. We have used this synopsis, generated from both published and unpublished data, to propose the origin, evolution and distribution of new pathotypes of P. helianthi. Virulence surveys revealed that diverse pathotypes of P. helianthi evolve in wild sunflower populations, most likely because sexual recombination and subsequent selection of recombinant pathotypes occurs there. Wild sunflower populations provide a continuum of genetically heterogeneous hosts on which P. helianthi can potentially complete its sexual cycle under suitable environmental conditions. Population genetics analysis of a worldwide collection of P. helianthi indicated that Australian isolates of the pathogen are more diverse than non-Australian isolates. Additionally, the presence of the same pathotype in different genotypic backgrounds supported evidence from virulence data that sexual recombination has occurred in the Australian population of P. helianthi at some time. A primary aim of the work described was to apply our knowledge of pathotype evolution to improve resistance in sunflower to sunflower rust. Molecular markers were identified for a number of previously uncharacterised sunflower rust R-genes. These markers have been used to detect resistance genes in breeding lines and wild sunflower germplasm. A number of virulence loci that do not recombine were identified in P. helianthi. The resistance gene combinations corresponding to these virulence loci are currently being introgressed with breeding lines to generate hybrids with durable resistance to sunflower rust.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.
Resumo:
Root-lesion nematode (Pratylenchus thornei) is a serious pathogen of wheat in many countries. The International Triticeae Mapping Initiative (ITMI) population of recombinant inbred lines (RILs) was assessed for resistance to P. thornei to determine the chromosome locations of the resistance genes. The ITMI population is derived from a cross between the resistant synthetic hexaploid wheat W-7984 and a susceptible bread wheat cultivar Opata 85. Two years of phenotypic data for resistance to P. thornei were obtained in replicated glasshouse trials. Quantitative trait locus (QTL) analysis was performed using available segregation and map data for 114 RILs. A QTL on chromosome 6DS showed consistent effects for reduced nematode numbers (partial resistance) across years and accounted for 11% and 23% of the phenotypic variation. A second QTL for P. thornei resistance on chromosome 2BS accounted for an additional 19% and 5%. Restriction fragment length polymorphism (RFLP) and simple sequence repeat (SSR) markers associated with the QTLs are physically located in regions rich in major genes at the distal ends of the short chromosome arms of 6D and 2B. SSR markers with potential for marker-assisted selection of P. thornei resistance effective in different genetic backgrounds have been identified.
Resumo:
Arbuscular mycorrhizal (AM) fungi, commonly found in long-term cane-growing fields in northern Queensland, are linked with both negative and positive growth responses by sugarcane (Saccharum spp.), depending on P supply. A glasshouse trial was established to examine whether AM density might also have an important influence on these growth responses. Mycorrhizal spores (Glomus clarum), isolated from a long-term cane block in northern Queensland, were introduced into a pasteurised low-P cane soil at 5 densities (0, 0.06, 0.25, 1, 4 spores/g soil) and with 4 P treatments (0, 8.2, 25, and 47 mg/kg). At 83 days after planting, sugarcane tops responded positively to P fertilizer, although responses attributable to spore density were rarely observed. In one case, addition of 4 spores/g led to a 53% yield response over those without AM at 8 mgP/kg, or a relative benefit of 17 mg P/kg. Root colonisation was reduced for plants with nil or 74 mg P/kg. For those without AM, P concentration in the topmost visible dewlap (TVD) leaf increased significantly with fertiliser P (0.07 v. 0.15%). However, P concentration increased further with the presence of AM spores. Irrespective of AM, the critical P concentration in the TVD leaf was 0.18%. This study confirms earlier reports that sugarcane is poorly responsive to AM. Spore density, up to 4 spores/g soil, appears unable to influence this responsiveness, either positively or negatively. Attempts to gain P benefits by increasing AM density through rotation seem unlikely to lead to yield increases by sugarcane. Conversely, sugarcane grown in fields with high spore densities and high plant-available P, such as long-term cane-growing soils, is unlikely to suffer a yield reduction from mycorrhizal fungi.
Resumo:
Pratylenchus thornei and P. neglectus are two species of root-lesion nematode that cause substantial yield losses in wheat. No commercially available wheat variety has resistance to both species. A doubled-haploid population developed from a cross between the synthetic hexaploid wheat line CPI133872 and the bread wheat Janz was used to locate and tag quantitative trait loci (QTLs) associated with resistance to both P. thornei and P. neglectus. Wheat plants were inoculated with both species of nematode in independent replicated glasshouse trials repeated over 2 years. Known locations of wheat microsatellite markers were used to construct a framework map. After an initial single-marker analysis to detect marker-trait linkages, chromosome regions associated with putative QTLs were targetted with microsatellite markers to increase map density in the chromosome regions of interest. In total, 148 wheat microsatellite markers and 21 amplified fragment length polymorphism markers were mapped. The codominant microsatellite marker Xbarc183 on the distal end of chromosome 6DS was allelic for resistance to both P. thornei and P. neglectus. The QTL were designated QRlnt.lrc-6D.1 and QRlnn.lrc-6D.1, for the 2 traits, respectively. The allele inherited from CPI133872 explained 22.0-24.2% of the phenotypic variation for P. thornei resistance, and the allele inherited from Janz accounted for 11.3-14.0% of the phenotypic variation for P. neglectus resistance. Composite interval mapping identified markers that flank a second major QTL on chromosome 6DL (QRlnt.lrc-6D.2) that explained 8.3-13.4% of the phenotypic variation for P. thornei resistance. An additional major QTL associated with P. neglectus resistance was detected on chromosome 4DS (QRlnn.lrc-4D.1) and explained a further 10.3-15.4% of the phenotypic variation. The identification and tagging of nematode resistance genes with molecular markers will allow appropriate allele combinations to be selected, which will aid the successful breeding of wheat with dual nematode resistance.
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
Pratylenchus thornei is widespread throughout the wheat-growing regions in Australia and overseas and can cause yield losses of up to 70% in some intolerant cultivars. The most effective forms of management of P. thornei populations are crop rotation and plant breeding. There have been no wheat accessions identified as completely resistant to P. thornei, therefore breeding programs have used moderately resistant parents. The objective of the present research was to evaluate 274 Iranian landrace wheats for resistance to P. thornei and identify accessions with resistance superior to the current best resistance source (GS50a). Plants were grown in P. thornei inoculated soil under controlled conditions in a glasshouse pot experiment for 16 weeks. Ninety-two accessions found to be resistant or moderately so were retested in a second experiment. From combined analysis of these experiments, 34 accessions were identified as resistant with reproduction factors (final population per kg soil/initial inoculum rate per kg soil) <= 1. In total, 25 accessions were more resistant than GS50a, with AUS28470 significantly (P < 0.05) more resistant. The resistant Iranian landraces identified in the present study are a valuable untapped genetic pool offering improved levels of P. thornei resistance over current parents in Australian wheat-breeding programs.
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
Resistance to the root-lesion nematode Pratylenchus thornei was sought in wheat from the West Asia and North Africa (WANA) region in the Watkins Collection (148 bread and 139 durum wheat accessions) and the McIntosh Collection (59 bread and 43 durum wheat accessions). It was considered that landraces from this region, encompassing the centres of origin of wheat and where P. thornei also occurs, could be valuable sources of resistance for use in wheat breeding. Resistance was determined by number of P. thornei/kg soil after the growth of the plants in replicated glasshouse experiments. On average, durum accessions produced significantly lower numbers of P. thornei than bread wheat accessions in both the Watkins and McIntosh Collections. Selected accessions with low P. thornei numbers were re-tested and 13 bread wheat and 10 durum accessions were identified with nematode numbers not significantly different from GS50a, a partially resistant bread wheat line used as a reference standard. These resistant accessions, which originated in Iran, Iraq, Syria, Egypt, Sudan, Morocco, and Tunisia, represent a resource of resistance genes in the primary wheat gene pool, which could be used in Australian wheat breeding programs to reduce the economic loss from P. thornei.
Resumo:
Root-lesion nematode (Pratylenchus thornei) significantly reduces wheat yields in the northern Australian grain region. Canola is thought to have a 'biofumigation' potential to control nematodes; therefore, a field experiment was designed to compare canola with other winter crops or clean-fallow for reducing P. thornei population densities and improving growth of P. thornei-intolerant wheat (cv. Batavia) in the following year. Immediately after harvest of the first-year crops, populations of P. thornei were lowest following various canola cultivars or clean-fallow (1957-5200 P. thornei/kg dry soil) and were highest following susceptible wheat cultivars (31 033-41 294/kg dry soil). Unexpectedly, at planting of the second-year wheat crop, nematode populations were at more uniform lower levels (<5000/kg dry soil), irrespective of the previous season's treatment, and remained that way during the growing season, which was quite dry. Growth and grain yield of the second-year wheat crop were poorest on plots previously planted with canola or left fallow due to poor colonisation with arbuscular mycorrhizal (AM) fungi, with the exception of canola cv. Karoo, which had high AM fungal colonisation and low wheat yields. There were significant regressions between growth and yield parameters of the second-year wheat and levels of AMF following the pre-crop treatments. Thus, canola appears to be a good crop for reducing P. thornei populations, but AM fungal-dependence of subsequent crops should be considered, particularly in the northern Australian grain region.
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.
Resumo:
The root-lesion nematode Pratylenchus thornei causes substantial loss to bread wheat production in the northern grain region of Australia and other parts of the world. West Asia and North Africa (WANA) wheat accessions with partial resistance to P. thornei were analysed for mode of inheritance in a half-diallel crossing design of F1 hybrids (10 parents) and F2 populations (7 parents). General combining ability was more important than specific combining ability as indicated by components of variance ratios of 0.93 and 0.95 in diallel ANOVA of the F1 and F2 generations, respectively. General combining ability values of the 'resistant' parents were predictive of the mean nematode numbers of their progeny in crosses with the susceptible Australian cv. Janz at the F1 (R populations showed relatively continuous distributions. Heritability was 0.68 for F2 populations in the half-diallel of resistant parents and 0.82-0.92 for 5 'resistant' parent/Janz doubled-haploid populations (narrow-sense heritability on a line mean basis). The results indicate polygenic inheritance of P. thornei resistance with a minimum of from 2 to 6 genes involved in individual F populations of 5 resistant parents crossed with Janz. Morocco 426 and Iraq 43 appear to be the best of the parents tested for breeding for resistance to P. thornei. None of the P. thornei-resistant WANA accessions was resistant to Pratylenchus neglectus.
Resumo:
High populations (5000 to 20 000/kg soil) of the stubby-root nematode Paratrichodorus porosus were identified morphologically from soil samples taken under patches of poorly growing barley in a field between Yuleba and Surat in western Queensland, Australia. Lower populations (<4000/kg soil) were recovered from soil samples taken from asymptomatic barley. This is the first record of this nematode species on barley in Australia.