7 resultados para The Index

em eResearch Archive - Queensland Department of Agriculture


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Australian endemic skate Dipturus polyommata collected from by-catch of a benthic prawn fishery off southern Queensland was examined to provide information on reproduction and diet. Morphological relationships of total length (LT) to disc width and LT to mass were estimated. Size at birth was estimated at c. 100-110 mm and size at first feeding at c. 105-110 mm LT. Size at 50% maturity (LT50 and 95% CI) was 321 (305-332) and 300 (285-306) mm LT for females and males, respectively. Size at first maturity corresponded to 87.7% of observed maximum size in females (366 mm LT) and 87.5% in males (343 mm L T). Two females, representing 18.2% of mature females sampled in the austral winter were each carrying two egg cases. Descriptions of egg cases are given. Diet described by the index of relative importance as a percentage (%IRI) was predominantly crustacean based with carid shrimps (53.64%) and penaeoid prawns (23.30%) the most significant prey groups. Teleosts (11.72%), gammarid amphipods (5.31%) and mysids (4.72%) were also important to the diet of the species, while a further six prey groups made only a minor contribution to diet (1.31%). An ontogenetic change was evident between the diets of immature and mature skates. Immature animals fed more extensively on carids and amphipods and mature animals on penaeoids, teleosts and mysids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European wild rabbit has been considered Australia’s worst vertebrate pest and yet little effort appears to have gone into producing maps of rabbit distribution and density. Mapping the distribution and density of pests is an important step in effective management. A map is essential for estimating the extent of damage caused and for efficiently planning and monitoring the success of pest control operations. This paper describes the use of soil type and point data to prepare a map showing the distribution and density of rabbits in Australia. The potential for the method to be used for mapping other vertebrate pests is explored. The approach used to prepare the map is based on that used for rabbits in Queensland (Berman et al. 1998). An index of rabbit density was determined using the number of Spanish rabbit fleas released per square kilometre for each Soil Map Unit (Atlas of Australian Soils). Spanish rabbit fleas were released into active rabbit warrens at 1606 sites in the early 1990s as an additional vector for myxoma virus and the locations of the releases were recorded using a Global Positioning System (GPS). Releases were predominantly in arid areas but some fleas were released in south east Queensland and the New England Tablelands of New South Wales. The map produced appears to reflect well the distribution and density of rabbits, at least in the areas where Spanish fleas were released. Rabbit pellet counts conducted in 2007 at 54 sites across an area of south east South Australia, south eastern Queensland, and parts of New South Wales (New England Tablelands and south west) in soil Map Units where Spanish fleas were released, provided a preliminary means to ground truth the map. There was a good relationship between mean pellet count score and the index of abundance for soil Map Units. Rabbit pellet counts may allow extension of the map into other parts of Australia where there were no Spanish rabbit fleas released and where there may be no other consistent information on rabbit location and density. The recent Equine Influenza outbreak provided a further test of the value of this mapping method. The distribution and density of domestic horses were mapped to provide estimates of the number of horses in various regions. These estimates were close to the actual numbers of horses subsequently determined from vaccination records and registrations. The soil Map Units are not simply soil types they contain information on landuse and vegetation and the soil classification is relatively localised. These properties make this mapping method useful, not only for rabbits, but also for other species that are not so dependent on soil type for survival.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Varying the spatial distribution of applied nitrogen (N) fertilizer to match demand in crops has been shown to increase profits in Australia. Better matching the timing of N inputs to plant requirements has been shown to improve nitrogen use efficiency and crop yields and could reduce nitrous oxide emissions from broad acre grains. Farmers in the wheat production area of south eastern Australia are increasingly splitting N application with the second timing applied at stem elongation (Zadoks 30). Spectral indices have shown the ability to detect crop canopy N status but a robust method using a consistent calibration that functions across seasons has been lacking. One spectral index, the canopy chlorophyll content index (CCCI) designed to detect canopy N using three wavebands along the "red edge" of the spectrum was combined with the canopy nitrogen index (CNI), which was developed to normalize for crop biomass and correct for the N dilution effect of crop canopies. The CCCI-CNI index approach was applied to a 3-year study to develop a single calibration derived from a wheat crop sown in research plots near Horsham, Victoria, Australia. The index was able to predict canopy N (g m-2) from Zadoks 14-37 with an r2 of 0.97 and RMSE of 0.65 g N m-2 when dry weight biomass by area was also considered. We suggest that measures of N estimated from remote methods use N per unit area as the metric and that reference directly to canopy %N is not an appropriate method for estimating plant concentration without first accounting for the N dilution effect. This approach provides a link to crop development rather than creating a purely numerical relationship. The sole biophysical input, biomass, is challenging to quantify robustly via spectral methods. Combining remote sensing with crop modelling could provide a robust method for estimating biomass and therefore a method to estimate canopy N remotely. Future research will explore this and the use of active and passive sensor technologies for use in precision farming for targeted N management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives of this study were to predict the potential distribution, relative abundance and probability of habitat use by feral camels in southern Northern Territory. Aerial survey data were used to model habitat association. The characteristics of ‘used’ (where camels were observed) v. ‘unused’ (pseudo-absence) sites were compared. Habitat association and abundance were modelled using generalised additive model (GAM) methods. The models predicted habitat suitability and the relative abundance of camels in southern Northern Territory. The habitat suitability maps derived in the present study indicate that camels have suitable habitat in most areas of southern Northern Territory. The index of abundance model identified areas of relatively high camel abundance. Identifying preferred habitats and areas of high abundance can help focus control efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Nino Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aflatoxin is a potent carcinogen produced by Aspergillus flavus, which frequently contaminates maize (Zea mays L.) in the field between 40° north and 40° south latitudes. A mechanistic model to predict risk of pre-harvest contamination could assist in management of this very harmful mycotoxin. In this study we describe an aflatoxin risk prediction model which is integrated with the Agricultural Production Systems Simulator (APSIM) modelling framework. The model computes a temperature function for A. flavus growth and aflatoxin production using a set of three cardinal temperatures determined in the laboratory using culture medium and intact grains. These cardinal temperatures were 11.5 °C as base, 32.5 °C as optimum and 42.5 °C as maximum. The model used a low (≤0.2) crop water supply to demand ratio—an index of drought during the grain filling stage to simulate maize crop's susceptibility to A. flavus growth and aflatoxin production. When this low threshold of the index was reached the model converted the temperature function into an aflatoxin risk index (ARI) to represent the risk of aflatoxin contamination. The model was applied to simulate ARI for two commercial maize hybrids, H513 and H614D, grown in five multi-location field trials in Kenya using site specific agronomy, weather and soil parameters. The observed mean aflatoxin contamination in these trials varied from <1 to 7143 ppb. ARI simulated by the model explained 99% of the variation (p ≤ 0.001) in a linear relationship with the mean observed aflatoxin contamination. The strong relationship between ARI and aflatoxin contamination suggests that the model could be applied to map risk prone areas and to monitor in-season risk for genotypes and soils parameterized for APSIM.