4 resultados para Temporary work agencies
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Australia’s rangelands are the extensive arid and semi-arid grazing lands that cover approximately 70% of the Australian continent. They are characterised by low and generally variable rainfall, low productivity and a sparse population. They support a number of industries including mining and tourism, but pastoralism is the primary land use. In some areas, the rangelands have a history of biological decline (Noble 1997), with erosion, loss of perennial native grasses and incursion of woody vegetation commonly reported in the scientific and lay literature. Despite our historic awareness of these trends, the establishment of systems to measure and monitor degradation, has presented numerous problems. The size and accessibility of Australia’s rangeland often mitigates development of extensive monitoring programs. So, too, securing on-going commitment from Government agencies to fund rangeland monitoring activities have led to either abandonment or a scaled-down approach in some instances (Graetz et al. 1986; Holm 1993). While a multiplicity of monitoring schemes have been developed for landholders at the property scale, and some have received promising initial uptake, relatively few have been maintained for more than a few years on any property without at least some agency support (Pickup et al. 1998). But, ironically, such property level monitoring tools can contribute significantly to local decisions about stock, infrastructure and sustainability. Research in recent decades has shown the value of satellites for monitoring change in rangelands (Wallace et al. 2004), especially in terms of tree and ground cover. While steadily improving, use of satellite data as a monitoring tool has been limited by the cost of the imagery, and the equipment and expertise needed to extract useful information from it. A project now under way in the northern rangelands of Australia is attempting to circumvent many of the problems through a monitoring system that allows property managers to use long-term satellite image sequences to quickly and inexpensively track changes in land cover on their properties
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
There are more than 10,000 small-scale fish farms in PNG producing tilapia, carp or trout for home consumption and sale. Interest in aquaculture is growing rapidly, and the government has given high priority to aquaculture development, in recognition of its potential contribution to achieving food security particularly in the inland areas. Significant constraints include lack of capability within management agencies to identify appropriate sites for pond development, inadequate supply and poor quality of fingerlings, limited availability and high cost of pond fertilisers and suitable feeds, and a general lack of knowledge and training on aquaculture husbandry skills.
Resumo:
This paper details Australian research that developed tools to assist fisheries managers and government agencies in engaging with the social dimension of industry and community welfare in fisheries management. These tools are in the form of objectives and indicators. These highlight the social dimensions and the effects of management plans and policy implementation on fishing industries and associated communities, while also taking into account the primacy of ecological imperatives. The deployment of these objectives and indicators initially provides a benchmark and, over the life of a management plan, can subsequently be used to identify trends in effects on a variety of social and economic elements that may be objectives in the management of a fishery. It is acknowledged that the degree to which factors can be monitored will be dependent upon resources of management agencies, however these frameworks provide a method for effectively monitoring and measuring change in the social dimension of fisheries management.Essentially, the work discussed in this paper provides fisheries management with the means to both track and begin to understand the effects of government policy and management plans on the social dimension of the fishing industry and its associated communities. Such tools allow the consideration of these elements, within an evidence base, into policy arrangements, and consequently provide an invaluable contribution to the ability to address resilience and sustainability of fishing industries and associated communities.