2 resultados para Temporal Analysis

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate the effect of long term recurrent selection on the pattern of gene diversity, thirty randomly-selected individuals from the progenitors (p) and four selection cycles (C0, C3, C6 and C11) were sampled for DNA analysis from the tropical maize (Zea mays L.) breeding populations, Atherton 1 (AT1) and Atherton 2 (AT2). Fifteen polymorphic Simple Sequence Repeat markers amplified a total of 284 and 257 alleles in AT1 and AT2 populations, respectively. Reductions in the number of alleles were observed at advanced selection cycles. About 11 and 12% of the alleles in AT1 and AT2 populations respectively, were near to fixation. However, a higher number of alleles (37% in AT1 and 33% in AT2) were close to extinction. Fisher's exact test and analysis of molecular variance (AMOVA) showed significant population differentiations. Gene diversity estimates and AMOVA revealed increased genetic differentiations at the expense of loss of heterozygosity. Population differentiations were mainly due to fixation of complementary alleles at a locus in the two breeding populations. The estimates of effective population at an advanced selection cycle were close to the population size predicted by the breeding method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.