7 resultados para Tea.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This study aimed to assess the effect of tea tree oil based formulations against two major ectoparasitic diseases in the sheep industry, flystrike and louse infestation, and to provide data to assist the assessment of the commercial feasibility of development of tea tree oil based ectoparasiticides. The results demonstrate insecticidal effects against both sheep lice and blowflies and repellent effects against adult flies and maggots. Dipping sheep in a Tea Tree Oil based formulation appeared to completely eradicate lice and suggests its potential use in sheep dipping formulations. Repellent and insecticidal effects against sheep blowflies, together with previously reported anti-microbial and wound healing properties, suggest significant benefits from the inclusion of tea tree oil in flystrike and wound treatment formulations. These effects occurred at concentrations of Tea Tree Oil that suggest the commercial viability of development of Tea Tree Oil based formulations for sheep parasite control and wound treatment and a potential new market for Tea Tree Oil.
Resumo:
Testing tea tree oil against buffalo flies on cattle.
Resumo:
Tea tree oil (TTO) from the Australian native plant Melaleuca alternifolia has wide ranging bio-active properties, including insecticidal and repellent activity against arthropods. Furthermore, composition of commercially available Australian TTO is specified under an International Organization for Standardization standard (ISO 4730), reducing the potential for variable effects often noted with botanical pesticides. The effect of TTO, meeting the ISO standard for terpinen-4-ol chemotype, was tested against sheep lice (Bovicola ovis Schrank) in a series of laboratory studies. Immersion of wool for 60s in formulations containing concentrations of 1% TTO and above caused 100% mortality of adult lice and eggs. Exposure to vapours from TTO, delivered as droplets in fumigation chambers and when applied to wool also caused high mortality in both lice and eggs. The main active component of TTO in the fumigant tests was terpinen-4-ol. Treated surface assays and tests with wool where the formulation was allowed to dry before exposure of lice indicated low persistence. These studies demonstrate that TTO is highly toxic to sheep lice and active at concentrations that suggest potential for the development of TTO-based ovine lousicides. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The in vivo pediculicidal effectiveness of 1% and 2% formulations of tea tree (Melaleuca alternifolia) oil (TTO) against sheep chewing lice (Bovicola ovis) was tested in two pen studies. Immersion dipping of sheep shorn two weeks before treatment in both 1% and 2% formulations reduced lice to non detectable levels. No lice were found on any of the treated sheep despite careful inspection of at least 40 fleece partings per animal at 2, 6, 12 and 20 weeks after treatment. In the untreated sheep louse numbers increased from a mean (+/- SE) of 2.4 (+/- 0.7) per 10 cm fleece part at 2 weeks to 12.3 (+/- 4.2) per part at 20 weeks. Treatment of sheep with 6 months wool by jetting (high pressure spraying into the fleece) reduced louse numbers by 94% in comparison to controls at two weeks after treatment with both 1% and 2% TTO formulations. At 6 and 12 weeks after treatment reductions were 94% and 91% respectively with the 1% formulation and 78% and 84% respectively with the 2% formulation. TTO treatment also appeared to reduce wool damage in infested sheep. Laboratory studies indicated that tea tree oil 'stripped' from solution with a progressive reduction in concentration as well as volume as more wool was dipped, indicating that reinforcement of active ingredient would be required to maintain effectiveness when large numbers of sheep are treated. The results of these studies suggest significant potential for the development of ovine lousicides incorporating TTO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Rhipicephalus australis (formerly Boophilus microplus) is a one host tick responsible for major economic loss in tropical and subtropical cattle production enterprises. Control is largely dependent on the application of acaricides but resistance has developed to most currently registered chemical groups. Repellent compounds that prevent initial attachment of tick larvae offer a potential alternative to control with chemical toxicants. The repellent effects of Melaleuca alternifolia oil (TTO) emulsions and two β-cyclodextrin complex formulations, a slow release form (SR) and a modified faster release form (FR), were examined in a series of laboratory studies. Emulsions containing 4% and 5% TTO applied to cattle hair in laboratory studies completely repelled ascending tick larvae for 24 h whereas 2% and 3% formulations provided 80% protection. At 48 h, 5% TTO provided 78% repellency but lower concentrations repelled less than 60% of larvae. In a study conducted over 15 days, 3% TTO emulsion applied to cattle hair provided close to 100% repellency for 2 days, but then protection fell to 23% by day 15. The FR formulation gave significantly greater repellency than the emulsion and the SR formulation from day 3 until the end of the study (P < 0.05), providing almost complete repellency at day 3 (99.5%), then decreasing over the period of the study to 49% repellency at day 15. Proof of concept is established for the use of appropriately designed controlled-release formulations to extend the period of repellency provided by TTO against R. australis larvae.
Resumo:
Seed persistence of Gymnocoronis spilanthoides (D.Don) DC.; Asteraceae (Senegal tea), a serious weed of freshwater habitats, was examined in relation to burial status and different soil moisture regimes over a 3-year period. Seeds were found to be highly persistent, especially when buried. At the end of the experiment, 42.0%, 27.3% and 61.4% of buried seeds were viable following maintenance at field capacity, water logged and fluctuating (cycles of 1 week at field capacity followed by 3 weeks’ drying down) soil moisture conditions, respectively. Comparable viability values for surface-situated seeds were ~3% over all soil moisture regimes. Predicted times to1% viability are 16.2 years for buried seed and 3.8 years for surface-situated seed. Persistence was attributed primarily to the absence of light, a near-obligate requirement for germination in this species, although secondary dormancy was induced in some seeds. Previous work has demonstrated low fecundity in field populations of G. spilanthoides, which suggests that soil seed banks may not be particularly large. However, high levels of seed persistence, combined with ostensibly effective dispersal mechanisms, indicate that this weed may prove a difficult target for regional or state-wide eradication.
Resumo:
Understanding and describing Australian flavor has proved to be a challenge for marketers of native foods because of the diversity of unique flavor signatures exhibited. Descriptive analysis techniques were applied, using a panel of 11 experienced judges, to define and articulate the sensory properties of 18 key commercial Australian native plant foods and ingredients including fruits, herbs and spices. Quantitative descriptive data were transformed into concise and accurate verbal descriptions for each of the species. The sensory language developed during the vocabulary development panel sessions was combined, categorized and ordered to develop a sensory lexicon specific for the genre. The language developed to describe the foods and ingredients was diverse and distinctly Australian including aromas such as musk, rosella, citrus and spiced tea to eucalypt, bush scrub, fresh beetroot and wheat biscuit. Practical Applications This work provides a clear, useful means of characterizing and accurately describing the flavors of Australian native plant foods and ingredients. This information has been communicated to the native food industry, chefs, formulators, food technologists and flavor experts, and provides knowledge that will assist the wider food industry to successfully develop flavor blends and produce food products from native food ingredients. It is anticipated that extension of this information to both the local and international food markets will stimulate a renewed interest in Australian native ingredients and open new market opportunities for the industry. The data developed by this research have also formed the basis of quality control targets for emerging native foods and ingredients.