4 resultados para TRANSITION ENERGIES
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Transition of EGA wheat breeding activities to Australian Grain Technologies.
Resumo:
Understanding the ontogenetic habitat linkages of sharks is important for conservation and managing human interactions. We used acoustic telemetry, catch data, elemental and stable isotope signatures and dietary analyses to investigate ontogenetic habitat use in south-east Queensland, Australia, by the bull shark Carcharhinus leucas, a IUCN 'near-threatened' species that is implicated in many shark attacks on humans in urban estuaries. Sequential analyses for delta(15)N and delta(13)C of vertebrae from five adult C. leucas and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) for elemental composition from 23 C. leucas, including a pregnant female, were also used to trace ontogenetic habitat dependence. Acoustic telemetry indicated large juvenile and subadult C. leucas remained in estuarine habitats. delta(15)N values across shark vertebrae showed an ontogenetic shift in diet with total length (TL), confirmed by stomach contents. LA-ICPMS data reflected the ontogenetic movements of C. leucas from natal habitats. Differences among adults were gender related. Shifts in habitat use by subadults were correlated with a sigmoidal delta(13)C relationship with TL. C. leucas have a multipartite, stage-specific dependency in their transition between habitats along the freshwater-estuarine-marine continuum, making them particularly susceptible to the habitat alteration that is occurring globally.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
Variation in strontium (Sr) and barium (Ba) within otoliths is invaluable to studies of fish diadromy. Typically, otolith Sr : Ca is positively related to salinity, and the ratios of Ba and Sr to calcium (Ca) vary in opposite directions in relation to salinity. In this study of jungle perch, Kuhlia rupestris, otolith Sr : Ca and Ba : Ca, however, showed the same rapid increase as late-larval stages transitioned directly from a marine to freshwater environment. This transition was indicated by a microstructural check mark on otoliths at 35–45 days age. As expected ambient Sr was lower in the fresh than the marine water, however, low Ca levels (0.4 mg L–1) of the freshwater resulted in the Sr : Ca being substantially higher than the marine water. Importantly, the otolith Sr : Ba ratio showed the expected pattern of a decrease from the marine to freshwater stage, illustrating that Sr : Ba provided a more reliable inference of diadromous behaviour based on prior expectations of their relationship to salinity, than did Sr : Ca. The results demonstrate that Ca variation in freshwaters can potentially be an important influence on otolith element : Ca ratios and that inferences of marine–freshwater habitat use from otolith Sr : Ca alone can be problematic without an understanding of water chemistry.