4 resultados para Systems productive
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Agricultural land has been identified as a potential source of greenhouse gas emissions offsets through biosequestration in vegetation and soil. In the extensive grazing land of Australia, landholders may participate in the Australian Government’s Emissions Reduction Fund and create offsets by reducing woody vegetation clearing and allowing native woody plant regrowth to grow. This study used bioeconomic modelling to evaluate the trade-offs between an existing central Queensland grazing operation, which has been using repeated tree clearing to maintain pasture growth, and an alternative carbon and grazing enterprise in which tree clearing is reduced and the additional carbon sequestered in trees is sold. The results showed that ceasing clearing in favour of producing offsets produces a higher net present value over 20 years than the existing cattle enterprise at carbon prices, which are close to current (2015) market levels (~$13 t–1 CO2-e). However, by modifying key variables, relative profitability did change. Sensitivity analysis evaluated key variables, which determine the relative profitability of carbon and cattle. In order of importance these were: the carbon price, the gross margin of cattle production, the severity of the tree–grass relationship, the area of regrowth retained, the age of regrowth at the start of the project, and to a lesser extent the cost of carbon project administration, compliance and monitoring. Based on the analysis, retaining regrowth to generate carbon income may be worthwhile for cattle producers in Australia, but careful consideration needs to be given to the opportunity cost of reduced cattle income.
Resumo:
Grazing for Healthy Coastal Wetlands has been developed to provide graziers, landowners and extension officers with information on managing grazing in and around Queensland’s coastal wetlands to maintain healthy coastal wetlands and productive grazing enterprises. It provides practical advice on how grazing and associated land management practices can be implemented to support the long-term health of coastal wetlands whilst maintaining production. The guidelines have been compiled from published literature, grazier knowledge, wetlands managers and the experience of extension and natural resource management professionals. They reflect the current knowledge of suitable management practices for coastal wetlands. They are designed to complement and be considered in conjunction with existing information resources including the EDGEnetwork Grazing Land Management series and best management practice guidelines from regional Natural Resource Management (NRM) groups. While the recommendations apply broadly to Queensland’s coastal wetlands, regional, catchment and landscape-scale variations in wetland characteristics and the objectives of the individual grazing enterprise should be taken into account in planning and deciding management actions for wetlands. An individual grazing property may even have a range of wetland types with different management needs and objectives which should be identified during whole of property planning. Specific land and wetland management advice should also be sought from local grazing extension officers and NRM professionals.
Resumo:
Field studies were conducted over 5 years on two dairy farms in southern Queensland to evaluate the impacts of zero-tillage, nitrogen (N) fertiliser and legumes on a winter-dominant forage system based on raingrown oats. Oats was able to be successfully established using zero-tillage methods, with no yield penalties and potential benefits in stubble retention over the summer fallow. N fertiliser, applied at above industry-standard rates (140 vs. 55 kg/ha.crop) in the first 3 years, increased forage N concentration significantly and had residual effects on soil nitrate-N at both sites. At one site, crop yield was increased by 10 kg DM/ha. kg fertiliser N applied above industry-standard rates. The difference between sites in fertiliser response reflected contrasting soil and fertiliser history. There was no evidence that modifications to oats cropping practices (zero-tillage and increased N fertiliser) increased surface soil organic carbon (0-10 cm) in the time frame of the present study. When oats was substituted with annual legumes, there were benefits in improved forage N content of the oat crop immediately following, but legume yield was significantly inferior to oats. In contrast, the perennial legume Medicago sativa was competitive in biomass production and forage quality with oats at both sites and increased soil nitrate-N levels following termination. However, its contribution to winter forage was low at 10% of total production, compared with 40% for oats, and soil water reserves were significantly reduced at one site, which had an impact on the following oat production. The study demonstrated that productive grazed oat crops can be grown using zero tillage and that increased N fertiliser is more consistent in its effect on N concentration than on forage yield. A lucerne ley provides a strategy for raising soil nitrate-N concentration and increasing overall forage productivity, although winter forage production is reduced.
Resumo:
Fruit size and quality are major problems in early-season stonefruit cultivars grown in Australia and South-East Asia. In Australia, Thailand and Vietnam, new training and trellising systems are being developed to improve yield and fruit quality. Australian trials found that new training systems, such as the Open Tatura system, are more productive compared with standard vase-trained trees. We established new crop-loading indices for low-chill stonefruit to provide a guide for optimum fruit thinning based on fruit number per canopy surface and butt cross sectional area. Best management practices were developed for low-chill stonefruit cultivation using growth retardants, optimizing leaf nitrogen concentrations and controlling rates and timing of irrigation. Regulated deficit irrigation (RDI) improved fruit sugar concentrations by restricting water application during stage II of fruit growth. New pest and disease control measures are also being developed using a new generation of fruit fly baits. Soft insecticides such as (Spinosad) are used at significantly lower concentrations and have lower mammalian toxicity than the organophosphates currently registered in Australia. In addition, fruit fly exclusion netting effectively eliminated fruit fly and many other insect pests from the orchard with no increase in diseases. This netting system increased sugar concentrations of peach and nectarine by as much as 30%. Economic analyses showed that the break-even point can be reduced from 12 to 6 years Open Tatura trellising and exclusion netting.