2 resultados para Systems and Information

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With potential to accumulate substantial amounts of above-ground biomass, at maturity an irrigated cotton crop can have taken up more than 20 kg/ha phosphorus and often more than 200 kg/ha of potassium. Despite the size of plant accumulation of P and K, recovery of applied P and K fertilisers by the crop in our field experiment program has poor. Processing large amounts of mature cotton plant material to provide a representative sample for chemical analysis has not been without its challenges, but the questions regarding mechanism of where, how and when the plant is acquiring immobile nutrients remain. Dry matter measured early in the growing season (squaring, first white flower) have demonstrated a 50% increase in crop biomass to applied P (in particular), but it represents only 20% of the total P accumulation by the plant. By first open boll (and onwards), no response in dry matter or P concentration could be detected to P application. A glasshouse study indicated P recovery was greater (to FOB) where it was completely mixed through a profile as opposed to a banded application method suggesting cotton prefers a more diffuse distribution. The relative effects of root morphology, mycorrhizal fungi infection, seasonal growth patterns and how irrigation is applied are areas for future investigation on how, when and where cotton acquires immobile nutrients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.