6 resultados para System Compositional Approach
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Many fisheries worldwide have adopted vessel monitoring systems (VMS) for compliance purposes. An added benefit of these systems is that they collect a large amount of data on vessel locations at very fine spatial and temporal scales. This data can provide a wealth of information for stock assessment, research, and management. However, since most VMS implementations record vessel location at set time intervals with no regard to vessel activity, some methodology is required to determine which data records correspond to fishing activity. This paper describes a probabilistic approach, based on hidden Markov models (HMMs), to determine vessel activity. A HMM provides a natural framework for the problem and, by definition, models the intrinsic temporal correlation of the data. The paper describes the general approach that was developed and presents an example of this approach applied to the Queensland trawl fishery off the coast of eastern Australia. Finally, a simulation experiment is presented that compares the misallocation rates of the HMM approach with other approaches.
Resumo:
An urgent need exists for indicators of soil health and patch functionality in extensive rangelands that can be measured efficiently and at low cost. Soil mites are candidate indicators, but their identification and handling is so specialised and time-consuming that their inclusion in routine monitoring is unlikely. The aim of this study was to measure the relationship between patch type and mite assemblages using a conventional approach. An additional aim was to determine if a molecular approach traditionally used for soil microbes could be adapted for soil mites to overcome some of the bottlenecks associated with soil fauna diversity assessment. Soil mite species abundance and diversity were measured using conventional ecological methods in soil from patches with perennial grass and litter cover (PGL), and compared to soil from bare patches with annual grasses and/or litter cover (BAL). Soil mite assemblages were also assessed using a molecular method called terminal-restriction fragment length polymorphism (T-RFLP) analysis. The conventional data showed a relationship between patch type and mite assemblage. The Prostigmata and Oribatida were well represented in the PGL sites, particularly the Aphelacaridae (Oribatida). For T-RFLP analysis, the mite community was represented by a series of DNA fragment lengths that reflected mite sequence diversity. The T-RFLP data showed a distinct difference in the mite assemblage between the patch types. Where possible, T-RFLP peaks were matched to mite families using a reference 18S rDNA database, and the Aphelacaridae prevalent in the conventional samples at PGL sites were identified, as were prostigmatids and oribatids. We identified limits to the T-RFLP approach and this included an inability to distinguish some species whose DNA sequences were similar. Despite these limitations, the data still showed a clear difference between sites, and the molecular taxonomic inferences also compared well with the conventional ecological data. The results from this study indicated that the T-RFLP approach was effective in measuring mite assemblages in this system. The power of this technique lies in the fact that species diversity and abundance data can be obtained quickly because of the time taken to process hundreds of samples, from soil DNA extraction to data output on the gene analyser, can be as little as 4 days.
Resumo:
A pheromone-based trapping system will be developed for both A. lutescens and A. nitida to improve insecticide timing and to rationalise use.
Resumo:
* Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. * Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. * Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. * Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.
Resumo:
Emerging literature on climate adaptation suggests the need for effective ways of engaging or activating communities and supporting community roles, coupled with whole-of-system approaches to understanding climate change and adaptation needs. We have developed and evaluated a participatory approach to elicit community and stakeholder understanding of climate change adaptation needs, and connect diverse community members and local office bearers towards potential action. The approach was trialed in a series of connected social-ecological systems along a transect from a rural area to the coast and islands of ecologically sensitive Moreton Bay in Queensland, Australia. We conducted ‘climate roundtables’ in each of three areas along the transect, then a fourth roundtable reviewed and extended the results to the region as a whole. Influence diagrams produced through the process show how each climate variable forecast to affect this region (heat, storm, flood, sea-level rise, fire, drought) affects the natural environment, infrastructure, economic and social behaviour patterns, and psychosocial responses, and how sets of people, species and ecosystems are affected, and act, differentially. The participatory process proved effective as a way of building local empathy, a local knowledge base and empowering participants to join towards future climate adaptation action. Key principles are highlighted to assist in adapting the process for use elsewhere.
Resumo:
Queensland fruit fly (Bactrocera tryoni) is a significant quarantine pest of stonefruit. To access domestic markets within Australia stonefruit require treatment to ensure they are free of fruit flies. Due to the recent restriction of the organophosphate pesticides, fenthion and dimethoate, the stonefruit industry now faces a significant challenge to control fruit flies. In this field trial we quantified the level of control achieved by a 'best case' systems approach that relied on currently available and registered control measures. This system included protein bait sprays, Male Annihilation Technique, insecticide cover sprays of trichlorfon, maldison and spinetoram and inspection and culling of damaged fruit. We found that in two out of the three trial orchards, packed fruit samples from Gatton (QLD) and Bangalow (NSW) had low levels of fruit fly infestation; 1.47 and 2.97% respectively. However, at the third property located at Alstonville (NSW) a high level of infestation (51.63%) was found in packed nectarines, which was likely attributed to the late implementation of the systems approach. This trial has demonstrated the potential for fruit fly control without relying on fenthion, however further modification of the system is needed to refine and increase efficacy.