8 resultados para Swelling ability
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
With 6 tables Abstract The objectives of this study were to evaluate the importance of heterosis for agronomic and quality traits in shrunken (sh2) sweet corn, assess the usefulness of combining ability to predict the value of parents and their crosses for further genetic improvement and examine whether genetic divergence can predict heterosis or F1 performance. Ten genetically diverse shrunken (sh2) sweet corn inbred lines were used to generate 45 F1s. F1s and parents were evaluated for agronomic and quality traits across environments. Heterosis was more important for yield-related traits than it was for ear aspects and eating quality. Heterosis for most traits was mostly dependent on dominance genetic effects of parental lines. Parents and F1per se performance were highly correlated with general combining ability effects and mid-parent values, respectively, for most traits. Hybrid performance for flavour and plant height was significantly but weakly related to simple sequence repeat (SSR)-based genetic distance (GD). Phenotypic distance (PD), estimated from phenotypic traits was correlated with heterosis for total soluble solids, ear length and flavour. © 2012 State of Queensland.
Resumo:
Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers (‘hitch hiking’). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.
Resumo:
Cabomba caroliniana is a submersed macrophyte that has become a serious invader. Cabomba predominantly spreads by stem fragments, in particular through unintentional transport on boat trailers ('hitch hiking'). Desiccation resistance affects the potential dispersal radius. Therefore, knowledge of maximum survival times allows predicting future dispersal. Experiments were conducted to assess desiccation resistance and survival ability of cabomba fragments under various environmental scenarios. Cabomba fragments were highly tolerant of desiccation. However, even relatively low wind speeds resulted in rapid mass loss, indicating a low survival rate of fragments exposed to air currents, such as fragments transported on a boat trailer. The experiments indicated that cabomba could survive at least 3 h of overland transport if exposed to wind. However, even small clumps of cabomba could potentially survive up to 42 h. Thus, targeting the transport of clumps of macrophytes should receive high priority in management. The high resilience of cabomba to desiccation demonstrates the risk of continuing spread. Because of the high probability of fragment viability on arrival, preventing fragment uptake on boat trailers is paramount to reduce the risk of further spread. These findings will assist improving models that predict the spread of aquatic invasive macrophytes.
Resumo:
In Australia, macadamia trees are commonly propagated by germinating rootstock seed and grafting when seedlings reach a suitable size. The production of grafted trees is a protracted and complex process, however, propagation of macadamia via cuttings represents a simpler and faster method of multiplication. Macadamias have traditionally proven difficult to propagate from cuttings, and while recent developments in the process have improved success rates, substantial variation in rooting ability between cultivars and species has been reported. The cultivar 'Beaumont' (Macadamia integrifolia × M. tetraphylla) is commonly propagated by cutting for use as a rootstock, and is relatively easy to strike while other cultivars are more difficult. There is speculation that Hawaiian cultivars are more difficult to strike from cuttings than Australian cultivars due to species and genetic composition. In this experiment, cuttings of 32 genotypes were evaluated for rooting ability. Each genotype's species profile was estimated using historical data, and used to determine species effects on survival (percentage) and rooting ability (rating 0-2). M. jansenii (100%), M. tetraphylla (84%) and M. integrifolia/tetraphylla hybrids (79%) had the highest success rates while M. integrifolia (54%) and M. ternifolia (43%) had the lowest survival. Rooting ability of M. jansenii (1.75) was significantly higher than M. ternifolia (0.49) but not significantly higher than M. tetraphylla × M. integrifolia with (1.09), M. tetraphylla (1.03) or M. integrifolia (0.88).