7 resultados para Sustainable livelihood approach
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Weed management is the major challenge to the success of dry-seeded rice (DSR). A field study was conducted during the dry seasons of 2013 and 2014at the International Rice Research Institute to evaluate the performance of herbicides combined with mechanical weeding in DSR. The lowest weed density and biomass were found in the treatment oxadiazon followed by (fb) fenoxaprop+ethoxysulfuron fb 2,4-D fb mechanical weeding (MW) at 42 days after sowing (DAS). However, this treatment had similar weed density and biomass to the treatments oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D,oxadiazon fb bispyribac-sodium fb 2,4-D, and oxadiazon fb MW (28 DAS) fb MW (42 DAS). The highest weed density and biomass were recorded in the treatment oxadiazon fb MW (28 DAS) and oxadiazon fb 2,4-D. Higher grain yield (5.3-5.8tha-1) was produced in the plots that received oxadiazon fb fenoxaprop+ethoxysulfuron fb 2,4-D fb MW(42 DAS) and oxadiazon fb bispyribac-sodium fb fenoxaprop+ethoxysulfuron fb 2,4-D. The results of this study provide sustainable weed management options to farmers growing DSR.
Resumo:
The demonstrated wide adaptability, substantial yield potential and proven timber quality of African mahogany (Khaya senegalensis) from plantings of the late 1960s and early 1970s in northern Australia have led to a resurgence of interest in this high-value species. New plantations or trials have been established in several regions since the early 1990s -in four regions in north Queensland, two in the Northern Territory and one in Western Australia. Overall, more than 1500 ha had been planted by early 2007, and the national annual planting from 2007-2008 as currently planned will exceed 2400 ha. Proceedings of two workshops have summarised information available on the species in northern Australia, and suggested research and development (R&D) needs and directions. After an unsustained first phase of domestication of K. senegalensis in the late 1960s to the early 1970s, a second phase began in northern Australia in 2001 focused on conservation and tree improvement that is expected to provide improved planting stock by 2010. Work on other aspects of domestication is also described in this paper: the current estate and plans for extension; site suitability, soils and nutrition; silviculture and management; productivity; pests and diseases; and log and wood properties of a sample of superior trees from two mature plantations of unselected material near Darwin. Some constraints on sustainable plantation development in all these fields are identified and R&D needs proposed. A sustained R&D effort will require a strategic coordinated approach, cooperative implementation and extra funding. Large gains in plantation profitability can be expected to flow from such inputs.
Resumo:
The north Queensland banana industry is under pressure from government and community expectations to exhibit good environmental stewardship. The industry is situated on the high-rainfall north Queensland coast adjacent to 2 natural icons, the Great Barrier Reef to the east and World Heritage-listed rain forest areas to the west. The main environmental concern is agricultural industry pollutants harming the Great Barrier Reef. In addition to environmental issues the banana industry also suffers financial pressure from declining margins and production loss from tropical cyclones. As part of a broader government strategy to reduce land-based pollutants affecting the Great Barrier Reef, the formation of a pilot banana producers group to address these environmental and economic pressures was facilitated. Using an integrated farming systems approach, we worked collaboratively with these producers to conduct an environmental risk assessment of their businesses and then to develop best management practices (BMP) to address environmental concerns. We also sought input from technical experts to provide increased rigour for the environmental risk assessment and BMP development. The producers' commercial experience ensured new ideas for improved sustainable practices were constantly assessed through their profit-driven 'filter' thus ensuring economic sustainability was also considered. Relying heavily on the producers' knowledge and experience meant the agreed sustainable practices were practical, relevant and financially feasible for the average-sized banana business in the region. Expert input and review also ensured that practices were technically sound. The pilot group producers then implemented and adapted selected key practices on their farms. High priority practices addressed by the producers group included optimizing nitrogen fertilizer management to reduce runoff water nitrification, developing practical ground cover management to reduce soil erosion and improving integrated pest management systems to reduce pesticide use. To facilitate wider banana industry understanding and adoption of the BMP's developed by the pilot group, we conducted field days at the farms of the pilot group members. Information generated by the pilot group has had wider application to Australian horticulture and the process has been subsequently used with the north Queensland sugar industry. Our experiences have shown that integrated farming systems methodologies are useful in addressing complex issues like environmental and economic sustainability. We have also found that individual horticulture businesses need on-going technical support for change to more sustainable practices. One-off interventions have little impact, as farm improvement is usually an on-going incremental process. A key lesson from this project has been the need to develop practical, farm scale economic tools to clarify and demonstrate the financial impact of alternative management practices. Demonstrating continued profitability is critical to encourage widespread industry adoption of environmentally sustainable practices
Resumo:
This project employed a participatory development and extension (D&E) approach involving on-farm trials and capacity- building activities to improve the economic and environmental performance of grain and mixed farming enterprises in central Queensland (CQ). The project's activities delivered (1) enhanced knowledge and understanding of key system variables that underpin grain and mixed farming businesses, and parameter values for these variables in relation to a range of environmental and management factors, (2) new and refined practices, technologies and management strategies to sustain the profitability of cropping and (3) products and information to support continuous improvement in farm business performance.
Resumo:
This study presents the use of a whole farm model in a participatory modelling research approach to examine the sensitivity of four contrasting case study farms to a likely climate change scenario. The newly generated information was used to support discussions with the participating farmers in the search for options to design more profitable and sustainable farming systems in Queensland Australia. The four case studies contrasted in key systems characteristics: opportunism in decision making, i.e. flexible versus rigid crop rotations; function, i.e. production of livestock or crops; and level of intensification, i.e. dryland versus irrigated agriculture. Tested tactical and strategic changes under a baseline and climate change scenario (CCS) involved changes in the allocation of land between cropping and grazing enterprises, alternative allocations of limited irrigation water across cropping enterprises, and different management rules for planting wheat and sorghum in rainfed cropping. The results show that expected impacts from a likely climate change scenario were evident in the following increasing order: the irrigated cropping farm case study, the cropping and grazing farm, the more opportunistic rainfed cropping farm and the least opportunistic rainfed cropping farm. We concluded that in most cases the participating farmers were operating close to the efficiency frontier (i.e. in the relationship between profits and risks). This indicated that options to adapt to climate change might need to evolve from investments in the development of more innovative cropping and grazing systems and/or transformational changes on existing farming systems. We expect that even though assimilating expected changes in climate seems to be rather intangible and premature for these farmers, as innovations are developed, adaptation is likely to follow quickly. The multiple interactions among farm management components in complex and dynamic farm businesses operating in a variable and changing climate, make the use of whole farm participatory modelling approaches valuable tools to quantify benefits and trade-offs from alternative farming systems designs in the search for improved profitability and resilience.
Resumo:
The shelf life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots (SER) ( Fusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicides either as field spray treatments or as postharvest dips. These have done a fairly good job at serving the industry and allowing fruits to be transported, stored and sold at markets distant from the areas of production. There are however concerns on the continuous use of these fungicides as the main or only tool for the management of these diseases. This has necessitated a re-think of how these diseases could be sustainably managed into the future using a systems approach that focuses on integrated crop management. It is a holistic approach that considers all the crop protection management strategies including the genetics of the plant and its ability to naturally defend itself from infection with plant activators and growth regulators. It also considers other cultural or agronomic management tools such as the use of crop nutrition, timely application of irrigation water and the pruning of trees on a regular basis as a means of reducing inoculum levels in the orchards. The ultimate aim of this approach is to increase yields and obtain long term sustainable production. It is guided by the sustainable crop production principle which states that producers should apply as little inputs as possible but as much as needed.
Resumo:
We outline a philosophical approach to Grand Challenge projects, with particular reference to our experience in our food security project involving the protection of stored grain from insect attack in two countries on different continents. A key consideration throughout has been the management of resistance in these pests to the valuable fumigant phosphine. Emphasis is given to the chain of research issues that required solution and the assembly of a well-integrated team, overlapping in skills for effective communication, in each country to solve the problems identified along that chain. A crucial aspect to maintaining direction is the inclusion of key end users in all deliberations, as well as the establishment and maintenance of effective outlets for the dissemination of practical recommendations. We finish with a summary of our achievements with respect to our approach to this food security Grand Challenge.