5 resultados para Suspended sediment transport
em eResearch Archive - Queensland Department of Agriculture
Resumo:
In Australia communities are concerned about atrazine being detected in drinking water supplies. It is important to understand mechanisms by which atrazine is transported from paddocks to waterways if we are to reduce movement of agricultural chemicals from the site of application. Two paddocks cropped with grain sorghum on a Black Vertosol were monitored for atrazine, potassium chloride (KCl) extractable atrazine, desethylatrazine (DEA), and desisopropylatrazine (DIA) at 4 soil depths (0-0.05, 0.05-0.10, 0.10-0.20, and 0.20-0.30 m) and in runoff water and runoff sediment. Atrazine + DEA + DIA (total atrazine) had a half-life in soil of 16-20 days, more rapid dissipation than in many earlier reports. Atrazine extracted in dilute potassium chloride, considered available for weed control, was initially 34% of the total and had a half-life of 15-20 days until day 30, after which it dissipated rapidly with a half life of 6 days. We conclude that, in this region, atrazine may not pose a risk for groundwater contamination, as only 0.5% of applied atrazine moved deeper than 0.20 m into the soil, where it dissipated rapidly. In runoff (including suspended sediment) atrazine concentrations were greatest during the first runoff event (57 days after application) (85 μg/L) and declined with time. After 160 days, the total atrazine lost in runoff was 0.4% of the initial application. The total atrazine concentration in runoff was strongly related to the total concentration in soil, as expected. Even after 98% of the KCl-extractable atrazine had dissipated (and no longer provided weed control), runoff concentrations still exceeded the human health guideline value of 40 μg/L. For total atrazine in soil (0-0.05 m), the range for coefficient of soil sorption (Kd) was 1.9-28.4 mL/g and for soil organic carbon sorption (KOC) was 100-2184 mL/g, increasing with time of contact with the soil and rapid dissipation of the more soluble, available phase. Partition coefficients in runoff for total atrazine were initially 3, increasing to 32 and 51 with time, values for DEA being half these. To minimise atrazine losses, cultural practices that maximise rain infiltration, and thereby minimise runoff, and minimise concentrations in the soil surface should be adopted.
Resumo:
The loss and recovery of intertidal seagrass meadows were assessed following the flood related catastrophic loss of seagrass meadows in February 1999 in the Sandy Strait, Queensland. Region wide recovery rates of intertidal meadows following the catastrophic disturbance were assessed by mapping seagrass abundance in the northern Great Sandy Strait region prior to and on 3 occasions after widespread loss of seagrass. Meadow-scale assessments of seagrass loss and recovery focussed on two existing Zostera capricorni monitoring meadows in the region. Mapping surveys showed that approximately 90% of intertidal seagrasses in the northern Great Sandy Strait disappeared after the February 1999 flooding of the Mary River. Full recovery of all seagrass meadows took 3 years. At the two study sites (Urangan and Wanggoolba Creek) the onset of Z. capricorni germination following the loss of seagrass occurred 14 months post-flood at Wanggoolba Creek, and at Urangan it took 20 months for germination to occur. By February 2001 (24 months post-flood) seagrass abundance at Wanggoolba Creek sites was comparable to pre-flood abundance levels and full recovery at Urangan sites was complete in August 2001 (31 months post-flood). Reduced water quality characterised by 2–3 fold increases in turbidity and nutrient concentrations during the 6 months following the flood was followed by a 95% loss of seagrass meadows in the region. Reductions in available light due to increased flood associated turbidity in February 1999 were the likely cause of seagrass loss in the Great Sandy Strait region, southern Queensland. Although seasonal cues influence the germination of Z. capricorni, the temporal variation in the onset of seed germination between sites suggests that germination following seagrass loss may be dependent on other factors (eg. physical and chemical characteristics of sediments and water). Elevated dissolved nitrogen concentrations during 1999 at Wanggoolba Creek suggest that this site received higher loads of sediments and nutrients from flood waters than Urangan. The germination of seeds at Wanggoolba Creek one year prior to Urangan coincides with relatively low suspended sediment concentrations in Wanggoolba Creek waters. The absence of organic rich sediments at Urangan for many months following their removal during the 1999 flood may also have inhibited seed germination. Data from population cohort analyses and population growth rates showed that rhizome weight and rhizome elongation rates increased over time, consistent with rapid growth during increases in temperature and light availability from May to October
Resumo:
Increased sediment and nutrient losses resulting from unsustainable grazing management in the Burdekin River catchment are major threats to water quality in the Great Barrier Reef Lagoon. To test the effects of grazing management on soil and nutrient loss, five 1 ha mini-catchments were established in 1999 under different grazing strategies on a sedimentary landscape near Charters Towers. Reference samples were also collected from watercourses in the Burdekin catchment during major flow events.Soil and nutrient loss were relatively low across all grazing strategies due to a combination of good cover, low slope and low rainfall intensities. Total soil loss varied from 3 to 20 kg haˉ¹ per event while losses of N and P ranged from 10 to 1900 g haˉ¹ and from 1 to 71 g haˉ¹ per event respectively. Water quality of runoff was considered moderate across all strategies with relatively low levels of total suspended sediment (range: 8-1409 mg lˉ¹), total N (range: 101-4000 ug lˉ¹) and total P (range: 14-609 ug lˉ¹). However, treatment differences are likely to emerge with time as the impacts of the different grazing strategies on land condition become more apparent.Samples collected opportunistically from rivers and creeks during flow events displayed significantly higher levels of total suspended sediment (range: 10-6010 mg lˉ¹), total N (range: 650-6350 ug lˉ¹) and total P (range: 50-1500 ug lˉ¹) than those collected at the grazing trial. These differences can largely be attributed to variation in slope, geology and cover between the grazing trial and different catchments. In particular, watercourses draining hillier, grano-diorite landscapes with low cover had markedly higher sediment and nutrient loads compared to those draining flatter, sedimentary landscapes.These preliminary data suggest that on relatively flat, sedimentary landscapes, extensive cattle grazing is compatible with achieving water quality targets, provided high levels of ground cover are maintained. In contrast, sediment and nutrient loss under grazing on more erodable land types is cause for serious concern. Long-term empirical research and monitoring will be essential to quantify the impacts of changed land management on water quality in the spatially and temporally variable Burdekin River catchment.
Resumo:
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road. Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively. When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion. The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.
Resumo:
Rainfall simulation experiments were carried out to measure runoff and soil water fluxes of suspended solids, total nitrogen, total phosphorus, dissolved organic carbon and total iron from sites in Pinus plantations on the coastal lowlands of south-eastern Queensland subjected to various operations (treatments). The operations investigated were cultivated and nil-cultivated site preparation, fertilised site preparation, clearfall harvesting and prescribed burning; these treatments were compared with an 8-y-old established plantation. Flow-weighted mean concentrations of total nitrogen and total phosphorus in surface runoff from the cultivated and nil-cultivated site-preparation, clearfall harvest, prescribed burning and 8-y-old established plantation treatments were very similar. However, both the soil water and the runoff from the fertilised site preparation treatment contained more nitrogen (N) and phosphorus (P) than the other treatments - with 3.10 mg N L-1 and 4.32 mg P L-1 (4 and 20 times more) in the runoff. Dissolved organic carbon concentrations in runoff from the nil-cultivated site-preparation and prescribed burn treatments were elevated. Iron concentrations were highest in runoff from the nil-cultivated site-preparation and 8-y-old established plantation treatments. Concentrations of suspended solids in runoff were higher from cultivated site preparation and prescribed burn treatments, and reflect the great disturbance of surface soil at these sites. The concentrations of all analytes were highest in initial runoff from plots, and generally decreased with time. Total nitrogen (mean 7.28, range 0.11-13.27 mg L-1) and total phosphorus (mean 11.60, range 0.06-83.99 mg L-1) concentrations in soil water were between 2 and 10 times greater than in surface runoff, which highlights the potential for nutrient fluxes in interflow (i.e. in the soil above the water table) through the general plantation area. Implications in regard to forest management are discussed, along with results of larger catchment-scale studies.