2 resultados para Surface charge density

em eResearch Archive - Queensland Department of Agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Listeria and Salmonella are important foodborne pathogens normally associated with the shrimp production chain. This study investigated the potential of Salmonella Typhimurium, Salmonella Senftenberg, and Listeria monocytogenes (Scott A and V7) to attach to and colonize shrimp carapace. Attachment and colonization of Listeria and Salmonella were demonstrated. Shrimp abdominal carapaces showed higher levels of bacterial attachment (P < 0.05) than did head carapaces. Listeria consistently exhibited greater attachment (P < 0.05) than did Salmonella on all surfaces. Chitinase activity of all strains was tested and found not to occur at the three temperatures (10, 25. and 37 degrees C) tested. The surface physicochemical properties of bacterial cells and shrimp carapace were Studied to determine their role in attachment and colonization. Salmonella had significantly (P < 0.05) more positive (-3.9 and -6.0 mV) cell surface charge than Listeria (-18 and -22.8 mV) had. Both bacterial species were found to be hydrophilic (<35%) when measured by the bacterial adherence to hydrocarbon method and by contact angle (theta) measurements (Listeria, 21.3 and 24.8 degrees, and Salmonella, 14.5 and 18.9 degrees). The percentage of cells retained by Pheryl-Sepharose was lower for Salmonella (12.8 to 14.8%) than it was for Listeria (26.5 to 31.4%). The shrimp carapace was found to be hydrophobic (theta = 74.5 degrees), and a significant (P < 0.05) difference in surface roughness between carapace types was noted. There was a linear correlation between bacterial cell Surface charge (r(2) = 0.95) and hydrophobicity (r(2) = 0.85) and initial attachment (P < 0.05) of Listeria and Salmonella to carapaces. However, the same properties Could not be related to subsequent colonization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins’ adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6–8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg−1 for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. © 2016 Informa UK Limited, trading as Taylor & Francis Group.