2 resultados para SupaCee Sections

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many landholders in the South Pacific, weed control of Mikania micrantha Kunth is conducted by manual or mechanical means, leaving fragments on or below the ground to reshoot and grow. Effects of age, length (number of nodes), and pattern of burial on the survival of stem sections of M. micrantha were examined in the field in Viti Levu, Fiji. The experiment was arranged in a randomized factorial design, with number of nodes, age of stem sections, and pattern (depth and orientation) of stem burial as factors. Stem sections with two or three nodes had significantly greater survival (30% and 25%, respectively) than those with one node (12%). Mature stem sections had a significantly greater survival rate (31%) than young stem sections (13%) when buried in either the horizontal or the vertical position. Vertical plantings had significantly greater survival (43%) than horizontal plantings (10%), and for both orientations survival decreased with depth of burial. Only 8% of stem sections survived when cut into smaller (3 to 5 cm) sections and buried at a depth of 10 cm. This study revealed that cutting the M. micrantha stems into smaller sections (<3 cm) and burying them at depths of 10 cm or greater would improve the overall management of M. micrantha in crop and noncrop systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the structural performance between thin-walled timber and FRP-timber composite Cee-sections. While, thin-walled composite timber structures have been proven to be efficient and ultra-light structural elements, their manufacturing is difficult and labour intensive. Significant effort and time is required to prevent the cracking of the transverse timber veneers, bent in the grain direction, when forming the cross-sectional shape. FRP-timber structures overcome this disadvantage by replacing the transverse veneers with flexible, unidirectional FRP material and only keeping the timber veneers which are bent in their natural rolling direction. The Cee-sections investigated in this study were 210 mm deep × 90 mm wide × 500 mm high and manufactured from five plies. For both section types, the three internal plies were thin (1 mm thick) softwood Hoop pine (Araucaria cunninghamii) veneers, orientated along the section longitudinal axis. The two outer layers, providing bending stiffness to the walls, were Hoop pine veneers (1 mm thick) for the timber sections and glass fibre reinforced plastic (0.73 mm thick) for the FRP-timber sections orientated perpendicular to the inner layers. The manufacturing process is briefly introduced in this paper. The profiles were fitted with strain gauges and tested in compression. Linear Variable Displacement Transducers also recorded the buckling along one flange. The test results are presented and discussed in this paper in regards to their structural behaviour and performance. Results showed that the use of FRP in the sections increases both the elastic local buckling load and section capacity, the latter being increased by about 24 percent. The results indicate that thin-walled FRP-timber can ultimately be used as a sustainable alternative to cold-formed steel profiles.