2 resultados para Sumatra
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. One potential method to manage fusarium wilt of banana is by manipulating the nutrient status in the soil. This study was conducted to determine the quality of Foc suppressive and conducive soil, the influence of soil application of silica and manure on the incidence of fusarium wilt of banana. Surveys were conducted in five banana plantations in three provinces in Indonesia: Lampung-Sumatra, West Java and Central Java. From the five locations, one location (Sala-man-Central Java) was heavily infected by Foc, another location (NTF Lampung-Sumatera) was slightly infected by Foc, while the rest (Sarampad-West Java, Talaga-West Java and GGP Lampung-Sumatra) were healthy banana plantations without Foc infection. Labile carbon analysis showed that the Foc suppressive soil had greater labile carbon content than conducive soil. Also, the analysis of fluorescein diacetate hydrolysis (FDA) and ?-glucosidase showed greater microbial activity in suppressive soil than the conducive soil. Observations of the incidence of necrotic rhizome of Foc susceptible 'Ambon Kuning' (AAA) banana cultivar showed that in the suppressive soil taken from Sarampad West Java, the application of silica and manure helped suppress fusarium wilt disease development. In the conducive soil taken from Salaman-Central Java, silica and manure applications were not able to suppress disease incidence. The result of this study indicated that in suppressive soil, the application of silica can increase plant resistance to Foc infection, while manure application can increase soil microbial activity, and suppress Foc development.
Resumo:
Major diseases, including Fusarium wilt tropical race 4, threaten banana production systems worldwide. New sources of genetic resistance are considered necessary in the fight against such diseases. The triangular region of Indonesia taking in Sulawesi, the Maluku Islands and Lesser Sunda Islands was prioritized by the Global Musa Genetic Resources Network, MusaNet for exploration and collecting. It is just east of the Wallace Line, which is recognized as a transition zone for flora in southeast Asia, and had been little explored. Bioversity International funded a team of scientists from Indonesia and Australia to make collecting missions in the triangle in October 2012 and February 2013. Suckers and seeds of 35 promising new accessions were collected. About 90% of these are either wild species or diploid cultivars of more direct use to breeding programs. These were morphologically characterized during the collecting missions and included a set of photographs recommended by Bioversitys Taxonomic Advisory Group. Cigar leaf samples were also collected and sent as fresh samples to the International Banana Genotyping Centre in the Czech Republic. Ploidy and DNA (SSR) genotyping determinations from these samples have been invaluable in quickly interpreting and better appreciating what has been discovered. The new accessions have been grown on at Solok field collection, West Sumatra and will be made available by Indonesia to the international community, including breeding programs, for evaluation and utilization. Information on wild Eumusa prompts a rethinking of the phytogeography of Musa acuminata. The variation within the Australimusa species M. lolodensis highlights the need for broader study of this Musa section. French Plantain-like edible AAs and prospects for the generation of African plantains in the region were identified. The mission indicated existence of local edible ABs in eastern Indonesia in association with balbisiana hybrids origins in the region. Further explorations in the region should add to Musa diversity knowledge.