3 resultados para Sulphate quantification

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of metabolism experiments investigated the recovery of continuous-, intravenously infused chromium complexed with ethylenediamine tetra-acetic acid (CrEDTA) and lithium sulphate in the urine of cattle with a view to using the markers to estimate urine and metabolite output in grazing cattle. The recovery of Cr in urine from these infusions was similar (90%) in metabolism trials when cattle consumed three very contrasting diets: high-grain formulated pellet, lucerne hay (Medicago sativa) or low-quality native grass hay (predominantly Heteropogon contortus). By contrast, Li recovery in urine averaged 46.3 +/- 0.40% and 72.6 +/- 0.43% for native pasture and lucerne hays, respectively, but was not constant across days. There was negligible transfer of Cr from CrEDTA in blood serum to the rumen or faeces, whereas appreciable quantities of infused Li were found in both. The ratio of urine volume estimated by spot samples and marker dilution of Cr, to urine volume measured gravimetrically, was 1.05. In grazing studies using rumen-fistulated (RF) steers grazing seven different tropical and temperate grass and legume pastures, the ratio of concentrations of purine derivatives (PD) to Cr in spot samples of urine was shown to vary diurnally in the range of 49% to 157% of the average 24 h value. This finding indicated the need for regular sampling of urine to achieve an accurate average value for the PD: Cr ratio in urine for use in estimating urinary PD excretion and hence microbial protein production in the rumen. It was concluded that continuous, intravenous infusion of CrEDTA resulted in a constant recovery of Cr in the urine of cattle across diets and, provided an intensive sampling regime was followed to account for diurnal variation, it would be suitable as a marker to estimate urine volume and urinary output of PD in grazing cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.